
SFA Modernization Partner
United States Department of Education

Student Financial Assistance

Integrated Technical Architecture

Detailed Design Document

Volume 3 – Enterprise Application Integration Architecture

Task Order #16

Deliverable # 16.1.2

October 13, 2000

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 i

Table of Contents

1 INTRODUCTION...1
1.1. OBJECTIVES..1
1.2. SCOPE ...1

2 EAI ARCHITECTURE OVERVIEW ..2
2.1. COMMUNICATION MIDDLEWARE...2
2.2. TRANSFORMATION AND FORMATTING ..3
2.3. APPLICATION CONNECTIVITY...3
2.4. BUSINESS PROCESS MANAGEMENT ...3
2.5. EAI ARCHITECTURE SOLUTION..4

3 EAI TECHNICAL DESIGN...5
3.1. EAI SYSTEM REQUIREMENTS...6

3.1.1. Servers and Workstations..6
3.1.2. Networking and Interfaces ..6

3.2. EAI DEVELOPMENT ENVIRONMENT...8
3.2.1. EAI Development Server ...9
3.2.2. EAI Development Workstation..9

3.3. EAI PRODUCTION ENVIRONMENT...10
3.3.1. EAI MQSI Production Server ...10
3.3.2. EAI Workflow Production Server ...11
3.3.3. EAI Workflow Workstation ...11
3.3.4. EAI Physical Interfaces ...12

3.4. OPERATIONS ENVIRONMENT ..16
3.4.1. EAI Management with QPasa! ...16
3.4.2. EAI Operations Workstation...16

3.5. FUTURE IMPLEMENTATION OPTIONS ...17
4 COMMUNICATIONS MIDDLEWARE (MQSERIES MESSAGING).................................19

4.1. UNIDIRECTIONAL COMMUNICATION..21
4.2. BI-DIRECTIONAL COMMUNICATION ...21
4.3. CLIENT-SERVER COMMUNICATION...22
4.4. PARALLEL PROCESSING COMMUNICATION ..22
4.5. QUEUE DESIGN RECOMMENDATIONS ..22

5 TRANSFORMATION AND FORMATTING (MQSERIES INTEGRATOR).....................24
5.1. MQSERIES INTEGRATOR OVERVIEW ...24
5.2. NODES ..25
5.3. MESSAGE PROCESSING NODES...26
5.4. TRANSACTIONALITY AND THREADING SUPPORT..26
5.5. SUPPLIED NODE DESCRIPTION AND FUNCTIONALITY...27

5.5.1. Triggering and Initiation...28
5.5.2. Checking and Filtering..28
5.5.3. Message Manipulation ..28

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 ii

5.5.4. External Database Operation ...29
5.5.5. Decision and Routing ..29
5.5.6. 3rd Party or Plug-In Message Processing Nodes..31
5.5.7. Transactionality within the Message Broker..31
5.5.8. Message Dictionaries ..32
5.5.9. XML and the Message Dictionary ..35
5.5.10. Message Warehouses ..35
5.5.11. Publish Subscribe System..36
5.5.12. Multi-Broker Domains ..39

5.6. MQSI CONTROL CENTER..39
6 APPLICATION CONNECTIVITY (ADAPTERS AND BRIDGES)......................................42

6.1. INTRODUCTION ..42
6.2. MQSERIES APPLICATION ADAPTER...42

6.2.1. Client application...43
6.2.2. Application...43
6.2.3. Application server..43
6.2.4. Container..43
6.2.5. Homes...44
6.2.6. RDB Connection..44

6.3. MQSERIES-CICS/ESA BRIDGE..45
6.3.1. When to use the CICS Bridge..45
6.3.2. How the CICS Bridge works ...45
6.3.3. Running CICS DPL programs ..46
6.3.4. Running CICS 3270 transactions..47

6.4. DATABASE NODES...49
6.5. ADDITIONAL ADAPTER REQUIREMENTS..49

6.5.1. Siebel Interface ..49
6.5.2. Oracle Financial Interface..50

7 BUSINESS PROCESS MANAGEMENT (MQSERIES WORKFLOW)...............................51
7.1. MQSERIES WORKFLOW ARCHITECTURE...51

7.1.1. Scalability...51
7.1.2. Multi-Tier Architecture..51

7.2. TRANSACTIONAL INTEGRITY..52
7.3. MQSERIES WORKFLOW RELEASE SCHEDULE...52

8 QUEUE DESIGN GUIDELINES...53
8.1. OPENING AND CLOSING QUEUES..53

8.1.1. MQOPEN Call...54
8.1.2. MQCLOSE Call...54

8.2. PUTTING MESSAGES ON A QUEUE...55
8.2.1. MQPUT Call..55

8.3. GETTING MESSAGES FROM A QUEUE..55
8.3.1. MQGET Call..56

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 iii

9 QUEUE MANAGER DESIGN GUIDELINES ...58
9.1. CONNECTING TO AND DISCONNECTING FROM A QUEUE MANAGER58

9.1.1. MQCONN Call ..58
9.1.2. MQDISC Call ..58

9.2. MQ SERIES QUEUE MANAGER OPTIONS ...59
9.3. QUEUE MANAGERS RECOMMENDATIONS...59

9.3.1. Don’t identify any single Queue Manager as the default ..59
9.3.2. Pass the connection name as program parameter...60

10 MQSERIES NAMING STANDARDS ..61
10.1. COMMON RULES..61
10.2. QUEUE MANAGER ...62
10.3. LOCAL QUEUES..63
10.4. REMOTE QUEUES...64
10.5. ALIAS QUEUES...65
10.6. MODEL AND DYNAMIC QUEUES...66

10.6.1. Model Queue Naming Standards..66
10.6.2. Dynamic Queue Naming Standards ...66

10.7. TRANSMISSION QUEUES..67
10.8. DEAD LETTER QUEUES ...68
10.9. INITIATION QUEUES...68
10.10. PROCESSES ...69
10.11. CHANNELS..70
10.12. MQSERIES INTEGRATOR...70

11 APPLICATION INTERFACE PROGRAMMING OPTIONS..72
11.1. MESSAGE DELIVERY ...72

11.1.1. MQI ..72
11.1.2. JMS...72
11.1.3. AMI...73

11.2. MESSAGE CONTENT ..73
11.2.1. XML..73
11.2.2. CMI...73

12 EAI COMMON ERROR HANDLING GUIDELINES ...74
12.1. FAILURE OF AN MQI CALL ...74
12.2. SYSTEM INTERRUPTION...74
12.3. UNABLE TO PROCESS MESSAGES ...74
12.4. RESPONDING TO ERRORS ..74

13 EAI OPERATIONS ENVIRONMENT CONSIDERATIONS...75
13.1. STOPPING QUEUE MANAGERS ...75
13.2. DEAD LETTER QUEUE ...75
13.3. MAKING CHANNELS RUN FASTER...76
13.4. MONITORING QUEUE MANAGERS ON MVS ...78

13.4.1. Page set usage..78

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 iv

13.4.2. SMF 115...78
13.4.3. Checkpoints..79
13.4.4. CICS adapter ...79
13.4.5. Other factors ..80

13.5. MQSERIES FOR SUN SOLARIS STARTUP PROCEDURES...80
13.6. MQSERIES FOR MVS/ESA STARTUP PROCEDURES ...86
13.7. MQSERIES INTEGRATOR SYSTEM MANAGEMENT..90

13.7.1. Installation ...90
13.7.2. Configuration and Set-up ..90
13.7.3. Interfaces for Definition and Deployment ..91
13.7.4. Deployment of Changes...91

14 EAI PERFORMANCE TUNING...93
14.1. REQUIREMENTS ...94
14.2. DYNAMIC WORKLOAD DISTRIBUTION...94
14.3. CAPACITY PLANNING INFORMATION..94
14.4. DESIGNING QUEUE MANAGERS FOR PERFORMANCE..95

14.4.1. Logging...95
14.5. UNIX KERNEL PARAMETERS..96
14.6. MVS QUEUE MANAGERS ...96

14.6.1. Page sets and storage class...97
14.6.2. Buffer pools ..97
14.6.3. Indexed queues...98

14.7. CHANNELS..98
14.7.1. Classes of service...98
14.7.2. Number of channels...99

14.8. NETWORK TUNING...99
14.8.1. SNA...99
14.8.2. TCP/IP..100

15 FURTHER INFORMATION ...101
16 ACRONYMS ...102

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 v

List of Figures
Figure 1 – EAI Architecture Context ..2
Figure 2 – EAI MQSeries Product...4
Figure 3 – EAI Technical Design Architecture ...5
Figure 4 – EAI Routing of Data to Data Stores...6
Figure 5 – Message Flow...8
Figure 6 – EAI CICS Interface ..13
Figure 7 – MQ Series CICS DPL..13
Figure 8 - MQSeries CICS Transaction Server..14
Figure 9 - Sample MQSeries Client Application Implementation to access the EAI application

...15
Figure 10 - EAI MQSI Production Server Database Server Interface ..16
Figure 11 – EAI Cluster with Dual Physical Servers...17
Figure 12 – MQ Series Messaging Environment..19
Figure 13 – Two-way Queue Application Communication..19
Figure 14 – Queue Manager Message Transfer..20
Figure 15 – Unidirectional Queue Application Communication ...21
Figure 16 – Bidirectional Queue Application Communication ..21
Figure 17 – Client Server Application Communication ...22
Figure 18 – MQSerices Integrator Message Broking Hub..25
Figure 19 – MQSeries Queue Node Integration...30
Figure 20 – Warehouse Nodes...36
Figure 21 – Message Broker: Dynamic Publication...37
Figure 22 – MQSeries Message Broker Collective ...38
Figure 23 – Hierarchies of Topics..39
Figure 24 – Control Center – Message Flow Assignment to Brokers ..40
Figure 25 – Component Broker MQSeries Application Adapter ...43
Figure 26 – CICS DPL Transaction ...46
Figure 27 – CICS 3270 Transaction ...48
Figure 28 – NEON Interface with Siebel Applications ...50
Figure 29 – NEON Interface with Oracle Applications..50
Figure 30 – Message Queue Interface...72
Figure 31 – Trusted Bindings ...77
Figure 32 – MQSeries Message Broker...93

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 vi

List of Tables
Table 1 – List of Acronyms...102

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 1

1 Introduction

The Enterprise Application Integration (EAI) system is part of the Executive Architecture for
the Department of Education (DOE) Student Financial Assistance (SFA) system as part of the
Modernization Blueprint. EAI is a set of technology services that enables the sharing of
processes and data of disparate systems to support end-to-end business processes. The EAI
Architecture enables the many “stovepipe” applications to exchange information via
common, reusable methods and infrastructure.

EAI will allow the SFA program for the Department of Education to integrate new web-
based applications with existing back-end systems, while at the same time, providing a
means to migrate away from reliance upon existing legacy systems.

1.1. Objectives
The objectives of the EAI section of the document is to assist in developing the Development,
Execution, and Operations architectures for the initial release of the Integrated Technical
Architecture (ITA).

1.2. Scope
The scope of the EAI section is to provide an overview of the EAI application design, and
provide application-programming guidelines for EAI development and design.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 2

2 EAI Architecture Overview

EAI provides capabilities that will allow for the integration of web-based applications, the
Data Warehouse environment, commercial-off-the-shelf (COTS) packages, and existing
legacy systems within the SFA technical environment.

Internet Data Warehouse

Legacy Security

Enterprise Application Integration (EAI)

Enterprise Application Integration Architecture Context

Figure 1 – EAI Architecture Context

The EAI architecture provides the following technical services:

• Communications Middleware
• Transformation and Formatting
• Application Connectivity
• Business Process Management

For a detailed view of the EAI technical services, refer to Deliverable 4.1.2 – Recommended
Application Architecture Standards.

2.1. Communication Middleware
The Communications Middleware component provides the architecture that implement
various messaging models and route messages according to message content and context.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 3

These services provide the connection among disparate resources, as well as security,
queuing, and the functionality to reconcile network protocol differences.

Communications middleware:

• Directs the flow of messages among applications

• Supports both synchronous and asynchronous communications

• Routes messages to applications based on message subject and/or content

• Provides services via message brokers, Object Request Brokers (ORB), or message queues

2.2. Transformation and Formatting
The Transformation and Formatting layer is responsible for the conversion of data and
message content and syntax to reconcile the differences between data from multiple
heterogeneous systems and data sources. This layer is responsible for maintaining the
information structure of the messages passed between systems and their meaning in a format
that can be comprehended by another application.

The transformation and formatting layer supports:

• Message protocol and format transformation

• Syntactic translation of one data set into another. (Example: translation of date formats,
01 Aug 1999 -> 19990801)

• Semantic translation of data based on underlying data definitions or meaning. (Example:
conversion from the English system to the metric system)

2.3. Application Connectivity
The Application Connectivity layer provides reusable, non-invasive connectivity with legacy
systems and external databases.

The Application Connectivity layer provides:

• Pre-built application adapters to access legacy systems and databases

• Connection managed to and from source application

• Connectors to common technologies such as ORBs, support for Common Object Request
Broker Architecture (CORBA), Enterprise Java Beans (EJB), etc.

2.4. Business Process Management
The Business Process Management layer is responsible for the definition and management of
cross-application business processes across the enterprise and between enterprises. These
services enable the communication not just of data, but also of the business process context of
the data being sent to another application.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 4

Business Process Management provides:

• Centralized visibility and control of multi-step business processes traversing multiple
applications

• Real-time analysis capabilities

• Workflow-like coordination of multi-step processes

• Transactional control

• Process state information maintained to support rollback processes

• Graphical tools and metadata to define processes and rules

2.5. EAI Architecture Solution
The EAI Architecture solution for the Integrated Technical Architecture (TA)is based on the
International Business Machines (IBM) MQSeries product family. Each of the high-level EAI
technical services will be provided by a specific MQSeries application or component.

• Communications Middleware ! MQSeries Messaging

• Transformation and Formatting ! MQSeries Integrator.

• Application Connectivity ! Adapters and MQSeries Bridges

• Business Process Management ! MQSeries Workflow

The diagram below depicts the EAI Architecture and the relationship between the MQSeries
products. The MQSeries Adapters and Bridges are used as interfaces with external systems
and are not shown as part of this diagram.

MQSeries
Workflow

MQSeries
Integrator

MQSeries

" Messaging Services
" Standard Formats
" Tools

" XForm, Rules, Routing
" API Framework
" Templates, Utilities

" Workflow, Process Flow
" Application Services
" Tools Family Traits

Modular Set of
Offerings

MQSeries
Foundation

Common Look
and Feel

Management /.
Monitoring

Messaging
Tools

Figure 2 – EAI MQSeries Product

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 5

3 EAI Technical Design

This section of the document contains the EAI design specifications for the Technical
Architecture. The EAI components are part of the overall ITA Execution Architecture.

Internet
Clients

Intranet
Clients

Internet

Intranet

Autonomy
Server

Informatica
Servers

Microstrategy
Servers

IHS Servers

EAI Servers ODS Servers

Backup ND &
Primary AFS (TBD)

Primary ND &
Backup AFS

SAN

.

Firewall

LAN

TBD

TBD

Figure 3 – EAI Technical Design Architecture

In the initial release of the ITA, the EAI application will source and supply data to/from
external systems such as Internet applications and existing legacy systems. The EAI
application will have the capability to translate data through programmable, user defined
rules. The EAI application will help facilitate the routing of data to various datastores, and
facilitates querying such data.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 6

Host System

EAI

WebSphere
Application

Server

IHSWeb Browser

Workflow

MQSI

MQSeries

Data
Warehouse

Queue Manager

Figure 4 – EAI Routing of Data to Data Stores

3.1. EAI System Requirements
The EAI applications for the initial release of the Integrated Technical Architecture will
require several hardware, software, and networking components that are outlined in the
subsections which follow.

3.1.1. Servers and Workstations

EAI Servers

For the initial release of the Integrated Technical Architecture, two servers will be used to
provide EAI functionality. One server will has been identified as the MQSeries Integrator
server, the other will be used as the MQSeries Workflow server. MQSeries Messaging Queue
managers for Sun Solaris will be installed on both servers. Each server will also serve as the
hot-backup of the other.

EAI Workstations

EAI application development and monitoring will be performed using NT Workstations.
These workstations will host the MQSeries Integrator (MQSI) Control Center and MQSeries
Workflow Clients.

3.1.2. Networking and Interfaces

The EAI application will rely on SFA’s local area network (LAN) environment for
connectivity between workstations, printers, local servers and local hosts. The EAI
application may also operate over the wide area network (WAN) that provides connectivity
to legacy systems.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 7

Local Area Network (LAN)

The network topology required for the EAI application is Ethernet. Transmission Control
Protocol (TCP) is the communications protocol used between the workstations and the
servers. The LAN connection will support the following:

• Connectivity to the EAI servers.

• Connectivity to the WebSphere Application Servers

• Connectivity to the Systems Network Architecture (SNA) server, if required.

• Connectivity to the WAN, if required.

• Connectivity to the network printer(s).

Wide Area Network (WAN)

The standard communication protocols that will be used by the EAI application over the
WAN are SNA and TCP/Internet Protocol (IP). The WAN may also provide connectivity for
the EAI to interface with existing SFA legacy systems.

Interfaces with external Systems

There are a number of interfaces that will be required to enable the EAI components within
the production system. For the initial release of the Integrated Technical Architecture, this
includes interfaces between the EAI application and the WebSphere Application Server, the
Data Warehouse Environment, and Customer Information Control System (CICS)
applications running on an OS/390 mainframe. The message flows between these systems
will be accomplished using queues, which are part of the MQSeries Messaging layer of the
EAI application.

The diagram depicts an example of the message flow between the application server, a legacy
system, and the data warehouse.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 8

Figure 5 – Message Flow

3.2. EAI Development Environment
The EAI development environment consists of a single server running Sun Solaris and NT
workstations for application developers.

MQSeries Integrator will be implemented in a two-tier architecture. The MQSI server
components will be installed on a central development server while the Command Center
must be installed on end-user NT workstations.

Implementation of MQSeries Workflow in the development environment will also be 2-tier.
The MQSeries Workflow Server components and Buildtime as well as the Database server
will be installed on the EAI development server. The MQSeries Workflow Client
components will be installed on the NT workstation.

Both MQSeries Integrator and MQSeries Workflow require a DB2 UDB database to be
installed on the development server. The DB2 UDB database serves as the metadata
repository for both applications. The database comes bundled with both products.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 9

3.2.1. EAI Development Server

Hardware

The hardware used for the Development environment is a Sun E3500 server. The hardware
will be installed, configured and tested at the Virtual Data Center (VDC).

The minimum hardware requirements for the development server include:

• 400-MHz Sun Sparc processor

• 2.5GB Hard Drive

• 2GB RAM
Software
The EAI development server requires installation of the software listed below. The software
will be installed, configured and tested at the VDC center.

• Sun Solaris version 2.6

• SunLink SNA for version 9.1 (if required to connect to the legacy systems)

• MQSeries Messaging for Sun Solaris version 5.1

• MQSeries Integrator (MQSI) Server components for Sun Solaris version 2.0

• MQSeries Workflow 3.2.1 Server Components and Buildtime for Sun Solaris or later

• DB2 UDB (bundled with MQSI version 2.0, and MQSeries Workflow)

3.2.2. EAI Development Workstation

Hardware

The minimum hardware requirements for the EAI development workstations include:

• 500-MHz Pentium III Processor

• 10GB Hard Drive

• 512K RAM

• 1024 x 768 video monitor

Software

An EAI development workstation requires the following software to be installed:

• Windows NT Server version 4.0 with Service Pack 5

• MQSeries Integrator Command Center

• MQSeries Workflow Client

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 10

• MQSeries Client

• DB2 Client

3.3. EAI Production Environment
For The initial release of the Integrated Technical Architecture, two servers running Sun
Solaris and NT workstations will be used to provide EAI functionality in the production
environment.

MQSeries Integrator will be implemented in a two-tier architecture. The MQSI server
components will be installed on the MQSeries Integrator production server.

Implementation of MQSeries Workflow in the production environment will also be two-tier
approach. The MQSeries Workflow Server components will be installed on the MQSeries
Workflow server. The MQSeries Workflow Client components will be installed on the NT
workstation.

Both MQSeries Integrator and MQSeries Workflow require a DB2 UDB database to be
installed on their respective server. The DB2 UDB database serves as the metadata repository
for both applications. The database comes bundled with both products.

MQSeries Messaging Queue managers for Sun Solaris will be installed on both servers. Each
server will also serve as the hot-backup of the other.

3.3.1. EAI MQSI Production Server

Hardware

The hardware used for the MQSI production server is a Sun E3500. The hardware will be
installed, configured and tested at the VDC.

The hardware configuration for the MQSI server is as follows:

• 400-MHz Sun Sparc processor

• 5GB Hard Drive

• 4GB RAM

Software

The MQSI Production server requires installation of the software listed below. The software
will be installed, configured and tested at the VDC center.

• Sun Solaris version 2.6

• SunLink SNA for version 9.1 (if required to connect to the legacy systems)

• MQSeries Messaging for Sun Solaris version 5.1

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 11

• MQSeries Workflow 3.2.1 Server Components for Sun Solaris or later

• MQSeries Integrator (MQSI) Server components for Sun Solaris version 2.0

• DB2 UDB (bundled with MQSI version 2.0, and MQSeries Workflow (MQWF))

3.3.2. EAI Workflow Production Server

Hardware

The hardware used for the MQWF production server is a Sun E3500. The hardware will be
installed, configured and tested at the VDC.

The hardware configuration for the MQWF server is as follows:

• 400-MHz Sparc processor

• 5GB Hard Drive

• 4GB RAM

Software

The EAI server requires the software listed below. The software will be installed, configured
and tested at the VDC center.

• Sun Solaris version 2.6

• SunLink SNA for version 9.1 (if required to connect to the legacy systems)

• MQSeries Messaging for Sun Solaris version 5.1

• MQSeries Workflow 3.2.1 Server Components for Sun Solaris or later

• MQSeries Integrator (MQSI) Server components for Sun Solaris version 2.0

• DB2 UDB (bundled with MQSI version 2.0, and MQSeries Workflow)

3.3.3. EAI Workflow Workstation

Hardware

The minimum hardware requirements for the EAI production workstations include:

• 400-MHz Sparc processor

• 5GB Hard Drive

• 4GB RAM

Software

An EAI production workstation requires the following software to be installed:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 12

• Windows NT Server version 4.0 with Service Pack 5

• MQSeries Workflow Client

• MQSeries Client

• DB2 Client

3.3.4. EAI Physical Interfaces

The EAI application will have the ability to interface with web-based applications, relational
databases, COTS packages, and legacy systems.

Each EAI interface has specific requirements. Refer to the EAI Adapters and Bridges
Overview (section 6) for additional details regarding these interfaces. The following sections
outlines specific interfaces required for the initial release of the ITA.

EAI CICS Interfaces

MQSeries bridges will be used for accessing CICS to provide the benefits of a message/
queuing model and to facilitate application-to-application communication.

There are several facilities available in CICS, which enable a (new) front- end application to
interact with both MQSeries and with existing CICS transactions. Using a combination of
FEPI, EPI, EXEC CICS LINK and EXEC CICS START, it will be possible to access the majority
of existing CICS transactions.

• FEPI and EPI can be used to access existing transactions, which require a (3270) terminal
oriented interface.

• EXEC CICS LINK can be used to access CICS programs (rather than transactions) which
have an existing ’link’ interface.

• EXEC CICS START can be used to invoke asynchronous transactions. Note that
obtaining a response from these sorts of transactions may require a more extensive
structure than the example below.

The EAI CICS interface requires a Queue Manager to be installed on the legacy system. The
Queue Manager in the EAI MQSI production server will communicate with the Queue
Manager on the legacy system.

The diagram below depicts the EAI CICS Interface.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 13

Figure 6 – EAI CICS Interface

CICS DPL

MQSeries provides a bridge for MVS/ ESA for CICS DPL and a bridge for CICS 3270
transactions. The diagram below depicts the use of the MQSeries CICS DPL. It is important
to note that a MQSeries queue manager must be defined on the legacy system for this
interfacing approach.

Figure 7 – MQ Series CICS DPL

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 14

CICS Transaction Server V1. 3

The diagram below depicts the use of the MQSeries CICS Transaction Server version 1.3 for
CICS 3270 transactions. It is important to note that an MQSeries queue manager must be
defined on the legacy system for the Transaction Server approach to work.

Figure 8 - MQSeries CICS Transaction Server

Note: The specific approach or approaches that will be used to interface between the EAI
MQSI production server and existing CICS applications will be determined during the build
and test phase of the Integrated Technical Architecture. The selected target application will
need to be evaluated to determine the best method of building the interface.

EAI Application Server Interface

The EAI application will interface with the WebSphere Application Server using the
MQSeries application adapter (MQAA). MQAA provides integration capabilities between
web-based applications and message-based applications that leverage MQSeries messaging.

The WebSphere Application Server will implement an MQ client to connect to the queue
manager on the EAI MQSI Production Server over TCP/ IP via the MQ listener.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 15

Figure 9 - Sample MQSeries Client Application Implementation to access the EAI application

The diagram above shows an example of an MQSeries client application implementation to
access the EAI application. In the example, an MQSeries client application communicates
with the EAI system via two MQSeries queues. These queues reside on the EAI production
server. The access is via the MQSeries Application Adapter. The EAI application, using
MQSI, transforms the data. The queue manager on the production server routes the data via
MQSeries to the legacy system. Additional standards will be released in the future to allow
the integration of the EJB and the EAI application to further enhance the communication
between the Application Server and the EAI application.

EAI Database Interface

The diagram depicts the interface between the EAI MQSI Production Server and a database
server. The database, such as a data warehouse is remote from the application and queue
manager, which is acting as the coordinator. The database client libraries must be installed
on the EAI MQSI Production server and can transparently connect to server processes on
either the same or different physical machines. The interface between EAI and the database
is through a custom application.

The custom application is an MQSeries client application that relies on the MQSeries
Application Programming Interface (API) and the database API. Using the MQSeries API,
the application can access MQSeries queues. Using the database API, the application, via
embedded Structured Query Language (SQL) statement can access the database. Data will be
placed in MQSeries defined queues.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 16

Database Server
eg Oracle or DB2EAI

Queue (out)

Queue (in)

MQSeries
Client

Application

Figure 10 - EAI MQSI Production Server Database Server Interface

3.4. Operations Environment
The operation management of the EAI system will be performed using third party tools and
the standard tools that are provided by the product. The operation of the EAI system may
include:

• Startup and shutdown of the EAI application

• Troubleshooting

• Scheduled and unscheduled maintenance

• Upgrades

• System monitoring

3.4.1. EAI Management with QPasa!

The EAI management will be performed using the QPasa! product. QPasa! is a middleware
management software that addresses all five critical areas of configuration, operations,
problem-detection, performance, and analysis. QPasa! will be used to support the MQSeries
Messaging, MQSeries Integrator and MQSeries Workflow.

3.4.2. EAI Operations Workstation

Hardware

The minimum hardware requirements for the EAI operations workstations include:

• 500-MHz Pentium Processor

• 10GB Hard Drive

• 128GB RAM

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 17

• 1024 X 768 video monitor

• 16MB video RAM

Software

An EAI operations workstation requires the following minimum software to be installed:

• Windows NT 4.0

• Exceed

• QPasa!

• MQSI Control Center

• MQSeries Workflow client

3.5. Future Implementation Options
In future releases, additional technical components may be required to provide additional
scalability, flexibility and availability within the SFA technical environment.

The EAI application is designed to be redundant, highly available and scalable. However,
the system design will be implemented in stages.

EAI Clustering

The EAI application is designed using the MQSeries products that provide a highly
redundant and scalable system. In order to meet all the requirements for the EAI application,
it is recommended that the EAI application get implemented using the clustering portion of
the MQSeries Messaging system. The EAI cluster will consist of a minimum of two EAI
physical servers, each running a full version of the EAI software as shown in the diagram
below.

EAI System 1

EAI System 2
X

Figure 11 – EAI Cluster with Dual Physical Servers

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 18

In this configuration, messages are sent to both EAI System 1 and EAI System 2. Two
MQSeries will handle these messages queue managers. This configuration improves the
processing rate of the messages received. Note that only one message is sent to a server; it is
not replicated two times, rather a specific sever is chosen and the message is sent there. Also
note that placing and receiving the messages from the client sides (Internet space and legacy
systems) is still local and totally transparent.

If EAI System 2, for example, becomes unavailable, then it is not sent any further messages
and EAI application 1 will process all the messages.

It is important to remember that messages are owned by one queue manager rather than
shared between the two queue managers, if it fails, messages are held (if persistent) until the
queue manager restarts. New messages will not be sent to a failed Queue manager.

From this example, we can see how a cluster can provide a highly available and scalable EAI
messaging system.

EAI Clustering Implementation

The implementation of the EAI application clustering may be performed in future releases of
the Integrated Technical Architecture. For The initial release of the project, EAI clustering
will not be implemented. Depending on budgets and other factors, EAI clustering can be
implemented at later stage without a great impact on the overall system design.

Additional Interfaces

In future releases of the Integrated Technical Architecture, additional interfaces may be
required to access information from systems outside the scope of The initial release. Some of
these interfaces may include:

• RDBMS other than Oracle or DB2

• COTS packages (i.e., Siebel, Oracle Financials)

• Existing legacy systems

Refer to section 6 of this document for an overview of other adapter and interface methods.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 19

4 Communications Middleware (MQSeries Messaging)

MQSeries messaging is centered on the idea of time-independent and connectionless
communication of messages. A message is a collection of data; a string of bits and bytes that
have meaning to a particular application, and formatted by that application to convey
meaning in a fashion that it recognizes.

In the MQSeries Messaging environment, messages are exchanged between parts of a
distributed application by placing them on a queue. An application can define any number
of queues that it uses, and each queue can be used for a distinct purpose, or to convey a
distinct type of message.

Figure 12 – MQ Series Messaging Environment

Generally, each queue is used to control the flow of information from one application to
another application in one direction. One application puts messages on a queue and, at any
time later, another application gets messages off the queue. When an application gets a
message off a queue, the message is removed from the queue.

Two queues can be coupled to provide two-way communication between applications.

Figure 13 – Two-way Queue Application Communication

The queues defined on a given server are controlled by a local queue manager. More than
one queue manager can be created on the same server. In fact, different applications may use

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 20

different queue managers to create, define, and control their queues. Queues can be created
either administratively or programmatically by the applications that use them.

Queue managers on different servers can be interconnected administratively so that each
present the queues they control as a local queue on their respective machines. For the
applications that access a given queue, the queue will be local to each application. However,
the queue managers interconnect these local queues so that they form a single logical queue.
The queue manager transfers messages from one queue to the next to complete the circuit
between the application that put the messages, and the application part that gets the
messages.

Figure 14 – Queue Manager Message Transfer

A fundamental characteristic of message-queue based communication is that it places the
focus on the flow of information rather than the flow of control. Unlike call-based
communication models, the "requesting" program is not blocked while work is being
performed. Rather, the requesting program merely puts information onto a queue then
continues its own work. Having sent its information, the program does not know or care
where, when, or how that information is actually sent and processed. In this way, the
functionality of the program that sends the information is completely independent of the
program that receives and processes it. In fact, the sending program does not even know
what the receiving program is, let alone what it does.

The receiving program could be unavailable at the time the information is sent; the queue
manager ensures the information is not lost and gets transmitted when the receiving
program becomes available. The receiving program could simply record the information
captured in the message at one extreme, or perform some complex function on the
information at the other extreme. It could even reformat the information and send it
downstream on another queue.

To exploit the characteristics of queue-based messaging, a common design pattern for each
part of the application is to simply remain in a loop; receiving information coming into an
inbound queue, processing the information, then putting the results onto an outbound
queue.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 21

The overall flow of information between the application parts is important to the enterprise
as this represents the effective processing of their enterprise business. But the disconnected
nature supported by message queues allows different application developers to concentrate
on their own application function independently of other programmers developing other
parts of the application.

MQSeries supports a wide variety of qualities of service. These qualities can be defined
administratively on the queue manager, on individual queues, or merely in the way a
program interacts with the queue manager or queue.

The use of message queues can be arranged to achieve a number of overall communication
models. These include unidirectional, bi-directional, client-server and parallel processing
communication.

4.1. Unidirectional Communication

Figure 15 – Unidirectional Queue Application Communication

With Unidirectional communication, a single (logical) queue is created between two
applications. The sending application only puts messages on the queue, and the receiving
application only gets messages from the queue. Each application works completely
independently of the other. In particular, there is no reverse communication from the
receiving application to the sending application. The sending application is never aware of
what the receiving application has done, or even when it has actually received its messages
and processed them.

4.2. Bi-directional communication

Figure 16 – Bidirectional Queue Application Communication

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 22

With bi-directional communication also referred to as request-reply messaging, two queues
are created between the two applications. The sending application puts request messages on
a request queue. The receiving application gets these messages and processes them. When
processing is complete, the receiving application puts a reply message on a reply queue. The
sending application can then get the messages from the reply queue and use the results in
some other computation.

4.3. Client-server communication

Figure 17 – Client Server Application Communication

Client-server communication builds on request-reply messaging to handle requests from one
or more clients. One application is designated as the server. One or more other applications
are designated as clients. Each client shares a common request queue, but each has a
separate reply queue. The server gets messages off the request queue and can put messages
onto all of the reply queues. After processing a request message, it puts the results in a reply
message on the reply queue for the specific client that issued the request.

4.4. Parallel processing communication
Basically reverses the client-server communication style. In parallel processing, one
application is designated as the task manager. One or more other applications are designated
as subtasks. A separate request queue is created for each subtask. All subtasks share a
common reply queue with the task manager. The task manager divides up the work and
places a distinct message on the request queue for each subtask. Each subtask gets messages
from their respective request queue. After processing each request, each subtask puts the
results in a reply message on the common reply queue.

4.5. Queue Design Recommendations
Each messaging architecture above is a valid approach for implementation in the Integrated
Technical Architecture Environment. However, the appropriate method must be evaluated
at the application level on a case-by-case basis. For example, unidirection communications

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 23

messaging may be valid for certain applications that do not require acknowledgement that
the receiving application has, in fact, received and processed a particular message. Each
business capability that will use the Integrated Technical Architecture will need to determine
the appropriate messaging architecture for their particular applications.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 24

5 Transformation and Formatting (MQSeries Integrator)

MQSeries Integrator Version 2.0 is the product within the MQSeries family that provides
transformation and formatting capabilities within the Integrated Technical Architecture. It is
a framework designed to enable the provision of mission-critical Business Integration tools
and processes. It helps build new solutions and enhance existing solutions by adding
functionality to existing programs and data without requiring changes to the existing
programs and data.

This overview is designed to provide a concise look at the technical architecture and
functionality of MQSeries Integrator . The overview will cover the following:

• MQSeries Integrator Overview

• Message Flow Framework and Architecture

• Message Dictionaries

• Message Warehousing

• Publish and Subscribe

• Multi-Broker Domains

• Connecting Applications to the Broker

• Internal Architecture and Administration

• Broker Tools and the Control Center

• System Management

• Security

• Migration Issues

• Summary

5.1. MQSeries Integrator Overview
MQSeries Integrator provides a simple yet sophisticated way to process messages en-route to
their destinations. This will allow SFA focus on how to use this enabling technology to
transform their business processes, without needing to change their existing applications.

MQSeries Integrator functions as a Message Broker, which provides both the MQSeries
messaging layer and the Message Brokering hub for processing, transformation and
distribution of messages. Potential business uses for MQSeries Integrator include:

• Efficient connectivity for application integration using hub and spoke model

• Transformation of data while routing between applications

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 25

• Separation of business logic from application logic and data logic

• Added business application functionality such as publish/subscribe

• Integration framework for adding existing and new vendor products to further add
value

• Seamless integration of messages and relational databases

• Mapping between XML message formats and other data formats

Message Brokers act as a hub for messages passing between MQSeries applications. Once
messages have reached the Message Broker, they will be processed, based upon the
configuration of the Message Broker and on the contents of the message. Within the Message
Broker, individual functions are assigned to a collection of interconnected Nodes, where the
processing and transformation activities take place.

A key component of MQSeries Integraton is enabling vendors and SFA developers to write
their own processing nodes. Other components include an extended publish/subscribe
facility, message dictionaries and message warehousing. These will be discussed in more
detail below.

MQSeries Integrator
Message Broking

Hub

Configuration Data MQSeries Connectivity

Figure 18 – MQSerices Integrator Message Broking Hub

As the diagram shows, the Transport layer for the progression of messages into and out of
the Message Broker is the MQSeries Messaging product. Many of the functions of MQSeries
Messaging, such as assured once-only delivery and transactional support for messages are
leveraged within the MQSeries Integrator application.

5.2. Nodes
Within the framework of a Message Broker, all processing on the messages is performed
within constructs called Nodes, which are called from the message broker’s execution

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 26

environment. These Message Processing Nodes perform operations on the message data within
the message flow, as well as having the ability to access information outside the message
flow, such as accessing a database. Nodes may have Input and Output Terminals, and
connectors logically join up the terminals. Through the design and configuration of a
selection of nodes, a sophisticated processing environment can be built.

Nodes have a set of terminals that are used to receive messages from connectors or send
messages to connectors. Common types of terminals are in terminals, which receive
messages, out terminals, which forward on messages, and failure terminals, which forward on
messages when some error has occurred during the processing of the message or an
exception has been raised. This allows an EAI application developer to specify the behavior
of the system when encountering a failure at a particular point in the message flow.

A message processing node is a well defined processing stage, coded to perform a specific
task, or set of tasks on a message flowing through the broker. A selection of predefined
nodes comes supplied with MQSeries Integrator. Additional nodes can be created and
plugged-in. In order to form a message flow within an instance of a Message Broker, any
number of nodes can be ‘wired together’ using connectors.

5.3. Message Processing Nodes
Processing Nodes perform the various operations on messages in the message flow. An
input node initiates a message flow. As described below, MQSeries Integrator is supplied
with an MQInput node that reads a message off a specified MQSeries Queue. This node will
be connected to other nodes.

Although the links between nodes are called connectors, these are purely constructs to assist
in wiring the nodes together in the Control Center graphical tool. Messages are actually
passed between nodes by method invocation calls with a pointer to the message object
passed between the nodes. The properties of the nodes in each message flow can be
customized. This will enable the function of the nodes to be specific to the messages flowing
through the nodes, and to enable the processing required of the nodes in the message flow to
be performed.

For example, in a node that will perform a filter operation, the filter statement is assigned by
customizing the node specifically for the appropriate message and the filter operation that
will take place. In an MQInput node the name of the associated MQSeries queue is given as
part of the customized information along with the transactional properties of the message
flow.

5.4. Transactionality and Threading Support
Processing Nodes do not explicitly maintain the transactional integrity of the messages
flowing through the system. Instead the integrity is maintained transactionally within the
bounds of the message flow. A message is read from an MQSeries application queue to
begin the message flow and placed onto an MQSeries application queue to terminate the

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 27

flow of the message through the instance of the Message Broker. In between the MQInput
node, which begins the message flow, and the termination of the route through the message
flow, the message follows the processing route through the nodes in the message flow. If
there is more than one connection to an output terminal for a node, and the processing is
such that the message will be fired through this terminal, the processing for each different
route through the subsequent nodes attached to those output terminals will be handled
independently and sequentially. This will maintain use of the same thread within that
message flow, until the message flow for that message is complete. At that point the thread is
released back into the thread pool.

There can be many instances of the same message flow all processing messages read from the
same MQSeries queue. The system is multithreaded and designed to allow many messages
to be processed concurrently in multiple instances of a message flow, thus providing
multiple instances of each node. It is always in the interests of the application developer
designing the messages to flow through the node, and the node developer (if a user-
developed node), to ensure that the messages can flow rapidly through nodes. If messages
perform lots of different tasks within the message flow, and can become I/O bound, then the
performance of the message flow in terms of throughput of messages will be adversely
affected.

Each message flow is allocated a pool of between 1 and 256 threads. Each message that
comes into a message flow is assigned to a separate thread in the following manner. For each
MQInput node in a message flow there is a listening thread. This thread waits for a message
to be placed onto the input queue specified to that node. The thread then actions the
message, while a second thread is started to take on the role of listening for incoming
messages in another message flow instance.

When the message being processed by the original thread completes its processing within the
message broker, the original thread is returned to the thread pool for subsequent usage.
However, should all threads in the thread pool be used, the next thread to be returned to the
thread pool will be used to monitor the input queue.

If a message flow is to be transactional and to include a database operation in the message
flow, then the MQInput Node and a Database Node will need to be configured to accept
coordinated transactions.

5.5. Supplied Node Description and Functionality
Up to this point only processing nodes have been discussed. However, there are a large
assortment of pre-defined nodes that are part of the MQSeries Integrator product. Each node
is briefly outlined below, with a description of the function attributed to each type of node.
All nodes described below have an in terminal, and a failure terminal. Some nodes have a
variety of output terminals that vary depending on the type of node. Exceptions will be
noted for each node described.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 28

5.5.1. Triggering and Initiation

The only basic node type that offers this is the MQInput Node. The MQInput Node uses an
MQGET call to receive a message from a queue. The message then proceeds onwards in the
message flow either through the out terminal of the MQInput Node, on to the subsequent
node, or to the failure terminal, if an error occurs. There is a third terminal, called catch. This
terminal is initiated if the exceptions occur later in the message flow and are not handled
closer to the point of failure. One MQInput Node should be used to take messages off a
single MQSeries queue. Problems relating to the sequencing of messages could arise if
multiple MQInput Nodes were reading from one MQSeries queue and message sequencing
is not used.

5.5.2. Checking and Filtering

The basic node types here are the Check Node and the Filter Node.

• The Check node checks whether the message’s ‘Message Type Specification’ matches the
expected attributes for some or all of the attributes domain, set and type. This enables
evaluation of MQSeries Messaging message headers and other standard properties.
Messages flow through the in terminal. Should the check be successful they are flowed
through the match terminal; otherwise, they are routed through the failure terminal.

• The Filter node is a content-based evaluation of the input message, using an SQL
expression as the decision criteria. The possible terminals for this node are in, true, false,
unknown and failure. The message is flowed to the unknown terminal if the result of the
evaluation is indeterminate or unknown. If a failure occurs (such as an arithmetic
overflow) during the evaluation, the message is routed through the failure terminal.

5.5.3. Message Manipulation

The basic node types here are the Compute Node, the Extract Node, the NEON
FormatterNode and the ResetContentDescriptor Node.

• The Compute node is designed to transform a messages, with the ability to accept one
message type as an input and after transformation to output a different message type.
This is done using the contents of the input message and optionally data values from an
external relational database. Each element of the output message, which can be entirely
different from the input message, can be derived using a specific formula, with the
language used to specify the query closely based on SQL3.

• The Extract Node will produce a transformed output message from the input message by
selecting, copying, and modifying data elements from the input message to create a new
output message.

• The NEON Formatter Node invokes the NEON Formatter engine to map the content of
the input message to the output message. By using this node a message in one format,
defined to the NEON Repository can be transformed into another message format as

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 29

defined in the NEON format definitions. This node can be used either on its own or in
combination with other nodes to build up a comprehensive message flow.

• The ResetContentDescriptor Node is designed to allow a message to be interpreted by
another parser type to within the same message flow. It performs the same function as if
the message was passed from an MQOutput Node to an MQInput Node.

5.5.4. External Database Operation

The Basic Node types here are DataInsert Node, DataUpdate Node, DataDelete Node,
Database Node and Warehouse Node. All these Nodes are specialized nodes that perform a
specific function in accessing a particular database. All of these Node Types have in, out, and
failure terminals. All the operations using these nodes can be part of an externally
coordinated transaction, or they can commit the transaction independently. None of these
nodes alter the message the flows through them. The input for the DataInsert, DataUpdate
and DataDelete nodes must be typed, but the input for the Database node can be generic
XML.

• The DataInsert node performs a single insert of a new row into a specified database. Some
of the information from the message may be used as part of the insert or the message
may just be used as a trigger, possibly following a filter node. An internally generated
SQL statement is used to do the insert.

• The DataUpdate node will update the values in one or more rows of a specified database.
An internally generated SQL expression is used for the update.

• The DataDelete node can delete one or more rows from a table in a specified database. The
message is unchanged in the process. Data from the input message can be used in the
expression to specify what data is deleted from the database.

• The Database node can perform a database operation on a specified database, without
changing the message, which passes through from the in terminal to the out terminal.
Values from the message can be included in the SQL expression to execute the database
operation.

• The Warehouse node, which is similar to the DataInsert Node, is used to store the messages
flowing through the message broker in a Message Warehouse. The messages stored in
the warehouse may be stored there for audit purposes or for off-line or batch processing
of messages or for subsequent retrieval and processing by the message broker. The
message is added to the database in the warehouse using a SQL insert. The message is
stored in the database with an index record built from the message schema.

5.5.5. Decision and Routing

The basic supplied node types are the MQOutput Node, the MQReply Node, the
NEONRules Node, and the Publication Node.

• The MQOutput node is a defined endpoint of a message flow within the Message Broker.
On leaving this node, messages are written to a MQSeries Queue using a MQPUT MQI

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 30

call. They can either be written to a specified fixed queue, or sent to a reply queue, or a
list of destination queues can be specified, using information from the message.

• The MQReply node is a specialized version of the MQOutput Node. It is used when the
MQSeries queue that a message is to be output to is the one specified by the ReplyTo
field of the message header.

• The NEONRules node is used when the message needs to be passed to the NEONRules
engine for evaluation of rules.

• The Publication node is used in the transmission of messages to subscribers of the defined
publish and subscribe service. Messages routed through this node as part of a
publish/subscribe message flow are matched to subscribers for both topic and content
and then forwarded directly to local subscribers or routed to other brokers to match their
subscribers that are remote to the publishing broker. Management of the published
topics and the subscribers are handled elsewhere in the Control Center.

The diagram illustrates the integration of MQSeries Queues with the nodes in a message
flow.

Figure 19 – MQSeries Queue Node Integration

Error Handling and Trace

There are three basic Node Types for error handling and audit trails. They are the Throw
Node, the Trace Node and the TryCatch Node.

• The Throw node has just an in terminal and is used within the message flow to throw
exceptions. These may be caught by TryCatch nodes earlier in the message flow or may
cause the processing of that particular message to cease and associated transactional
activity to be rolled back. Throw nodes may be used to throw an exception based on
message content to prevent additional failures downstream in the message flow.

• The Trace Node is used to aid in debugging the message flow. It has an in terminal and an
out terminal. The out terminal passes on the input message unmodified. However, the

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 31

Trace Node will format and write out a trace record to a specified destination, assisting in
creating a record of the route a message has taken through the message flow. The trace
format can be selected using a variety of options.

• A TryCatch node is used to prevent exceptions of downstream nodes from terminating the
processing of messages or transactions, which is likely to happen if the exception drops
back to the MQInput Node, which is the root node in the message flow. The message is
received by an in terminal and forwarded on unchanged using the try terminal. If this
node catches the exception it will be propagated using the catch terminal if this is
connected. Error handling of the exception can then occur. If exceptions occur in the
message flow have not been caught by other nodes, such as a TryCatch Node, the
MQInput Node will catch the exception, as it was the initiator of the thread and the catch
terminal on the MQInput node will propagate the message.

5.5.6. 3rd Party or Plug-In Message Processing Nodes

The Nodes described above are those which are supplied with the MQSeries Integrator
product. 3rd parties have and will continue to develop additional Processing Nodes to
enhance the message flow within the message brokers. In the future IBM may provide
additional nodes as well. These nodes must be designed to match the requirements of the
Message flow Framework that will allow the new nodes to be added to the MQSeries
Integrator Design Tool.

5.5.7. Transactionality within the Message Broker

MQSeries functionality allows MQSeries messages to participate in coordinated transactions,
thus ensuring the transactionality of the message within the system. By using this facility,
messages within the Message Broker can also gain transactionality for their message flow. If
there is any failure between doing the MQGET to read the message from the queue and
doing the MQPUT to place the message and the failure or the exception is not handled, the
entire operation can be rolled back to the MQGET.

Setting attributes on the instance of the message flow controls the flow of transactional
behavior between the nodes. In the MQInput node there is a transaction attribute that
determines whether messages flowing through the message flow will be handled
transactionally. In the MQOutput node there is a persistence attribute to determine the
persistence state of the outgoing message. The Database nodes have a co-ordination attribute
to determine whether access to the database will participate in the transaction.

These attributes can specify factors such as whether information written to a database will
participate within a transaction, how and when a transaction will be committed or rolled
back, and whether the message within the message flow will be sent persistently between
nodes. The EAI application developer needs to ensure that the appropriate level of
transactionality is applied to each node and collection of nodes and to ensure that all
participants, such as a database are appropriately configured. By using an appropriate
combination of these attributes on the message flow, and the relevant nodes, a message flow

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 32

can be transactional for its entire span, or can be transactional only in accessing databases, or
even be non-transactional.

5.5.8. Message Dictionaries

A key function of the MQSeries Integrator product is the ability to parse the contents of
messages to either perform work on the message data or to allow the message data to drive
work externally. In order to efficiently parse this data it is essential to be able to look up
message formats in order to identify the relevant fields in each message for every node based
function. Message Dictionaries are used to provide format information giving the ability to
rapidly parse information from messages, held in the dictionary as a logical message model
for direct access to named fields in the message body. With a message dictionary format
provided to give templates for expected message types, the required element fields can be
extracted from messages rapidly.

Components and Functionality of a Message Dictionary

A Message Dictionary provides support to parse the different formats of message contents
and their associated headers that are defined to the Message Dictionary. These formats can
include MQMD message descriptors, MQSeries RFHand RFH2 format headers, XML
messages, and messages built according to NEONFormatter definitions. These formats held
within the dictionary can be collectively known as Message Type Definitions. Within the
Message Dictionary, these definitions can be grouped together as Message Sets, and the
Message Sets are deployed to the Brokers that will be processing the messages within these
Message Sets.

The three main components of a Message Dictionary are a Message Repository Manager
(MRM), a Resource Manager, and a Message Translation Interface (MTI), but to a User the
Message Dictionary is accessed from the Control Center user interface and the components
are not exposed. The definition for the format of the messages, with identification of the
fields and elements within a model message template, is known as a Message Model. The
MRM uses the MQSeries Integrator Control Center tool to define and maintain the Message
Model and stores its information in the MRM Database. The Message Models in the MRM
can handle many forms of messages such as XML message formats and byte-oriented record
structures from C or COBOL sources. This information is supplied to the Brokers to be held
in a Runtime Dictionary (RTD), locally available to each deployed broker. The RTDs enable
the Message Brokers to maintain a local cache of the format definitions and thus improve the
speed of parsing the message formats. If the information in the dictionary is to be changed
while a copy is held in the RTD, a new version of the dictionary is added, as dictionaries can’t
be modified once deployed.

Uses of the Message Dictionary

The Control Center is used as the definition tool for defining the message formats the Broker
is expecting to receive. Messages to be received by the Message Broker have their formats
defined within the Control Center, which is the interface of the Message Dictionary. These

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 33

defined formats are then used in conjunction with the processing nodes and parsers to
provide the logical message formats used by the Message Broker from the wire format
messages received via MQSeries. The messages are interpreted from the wire format
descriptor with the aid of the message definition. The format of the message, when being
defined using the Control Center, needs more than the types, the elements (or fields), and the
associated lengths of the message in order to match the logical message format to the wire
format.

The Message Broker does not just use the Message Dictionary for providing the logical
message format from the wire format. The Message Dictionary is also used in the reverse
way to take the logical message formats received by the MQOutput and Publish Nodes and
to create wire format messages from those logical message formats. An example of this is
where a COBOL program generates the content of a message and the content of the message
is a COBOL record structure. The logical message structure held within the COBOL record
can be defined by the Message Broker. This definition is then used to deconstruct the
message into the relevant fields. However, when processing is complete within the Broker,
and the message needs to be sent to another COBOL application as a message, the outgoing
message needs to be created in wire format with the logical format becoming a COBOL
record structure again. Once again the Message Dictionary is used to map the fields of the
message, but this time it maps the message fields in those of the COBOL record, creating the
wire format as defined in the Message Dictionary. One of the strengths of the logical format
is that if the message is not being sent on to a COBOL application, but instead is being
displayed on a Web Page and needs to be sent in HTML, the definition within the Message
Dictionary will build the output wire format as required, taken from the definition in the
Message Template.

Message Templates

The definition of each type of message, or related group of messages, is described as a
Message Set. These Message Sets are assigned into a Message Dictionary, with a separate
Dictionary for each Set. On receiving a Message, the information in the message header will
help to identify the correct dictionary to load in order to parse the message. For deployment
to brokers, the entire collection of related messages grouped together into a Message Set is
assigned to the broker or brokers that will be receiving the messages for processing in the
assigned Message Flows. The information within the message header that provides these
details, and is defined to the Message Broker using the Control Center is as follows:

• The message domain, which describes the source of the message definition: that is,
whether it has been defined by the Control Center tool or the NEON tool.

• The message set, or project, groups together a collection of messages, elements and types,
within the specified domain, going to make up a complete definition of messages relating
to a particular flow or business operation.

• The message type that will precisely define the structure of the data within the message,
giving such details as the number and location of character strings.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 34

• The message format that identifies the wire format of the message. These definitions will
be required for each type of message (other than self defining formats such as XML),
expected to be received by any message flow. When the definitions have been completed
for each message, with the message set defined to a Message Dictionary, and the
appropriate Dictionaries assigned to the message flow, then when a message is received,
its type is identified by the information in the message header, and the appropriate
Message Dictionary is accessed and finally the Message Parser is called to deconstruct the
message. Careful thought must go into Message definition with the MRM. If messages
are just being routed through the Broker with no transformation then only one message
needs to be defined, as the output message is no different from the input message. If
there is any transformation, with elements being added or removed from the message,
then both input and output message formats should be defined to the MRM. When both
input and output message formats have been defined, then when transformation of the
message takes place, perhaps in a compute node, then the compute node will take the
input format as the inbound message and the message will be transformed into the
output message format according to the customized properties of the node performing
the transformation. Note that the MRM does not distinguish between input and output
message definitions. Whatever the sequence of messages used in the message flow, all
messages are defined in an identical manner.

Message Parsers

Once the template has been defined the Parser is required to establish what is to be done to
the received message. The Parser can be one that is supplied with MQSI, or it can be a user
or 3rd party supplied Parser. The behavior and the Parser can be different, depending on
whether the message has been defined to the Message Broker using the Control Center or
not. New messages defined in the Control Center as parts of message sets are created to be
logical message structures that can then be used in transmission to other systems. Supplied
parsers for these messages will work on messages that use the following types of message
headers: MQMD, MQRFH, MQRFH2, MQCIH (CICS bridge header), MQIIH (IMS bridge
header). When the incoming message has been defined in the Control Center, but is
generated by an application as a data structure, the parser can be specially constructed to
deal with this or the data structure can be imported using the facilities of the Control Center.

Validation of message content is very useful when dealing with messages that have been
defined to the Message Dictionary with attributes called Valid Values assigned to the
message fields. Should the message not be defined using the Control Center, there are a
number of options. The message could be in Generic XML, in which case it is self-defining
and does not require a Dictionary definition. Should this be the case, the message cannot be
validated to ensure it is in the correct format. If the message structure is not defined
anywhere, it is treated as Opaque content and no content based processing can be performed
on the message as it flows through the Broker, but it can be acted on according to the
information in the Message Header and the design of the Message Flow.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 35

5.5.9. XML and the Message Dictionary

If no template, or schema, exists for an XML message, but the message uses well-formed
XML, the message can be termed self-describing and content based routing, based on the
XML descriptors, can be applied. In this case, with a well-formed XML message, the message
flow can still be architected, and nodes, such as the compute node can be customized to
handle the elements in the XML message, even when they haven’t been defined to the
Message Dictionary. By using the message dictionaries for non-XML messages, which are
not self-describing, allow content based routing based on the message dictionary’s
description of the content, once the message format has been defined to the Message
Dictionary.

Within MQSeries Integrator, all configuration data for the application is held in XML format.
Once a message is defined to the MRM as a message format, the format of the message to be
output can be also defined with the data format for the output message being XML as
required. Thus XML messages can be generated within the Message Broker from non-XML
based message formats.

5.5.10. Message Warehouses

Message Warehouses can be used for many different purposes. However, a fundamental use
is that they store long-lived messages in a standard relational database. These messages may
then be used for purposes such as audit trails for a particular message type (such as high
value messages). Message Warehousing may be a standard method of logging the work
being performed within a particular broker, possibly for off-line analysis. Another possible
reason for Data Warehousing would be to implement a full Data Mining or Data Analysis on
the data flowing through the Message Broker.

Warehousing Nodes

In order to place a message within a Message Warehouse, a node must be configured to do
so. This message flow is likely to perform some calculation or transformation on the message
before moving the message to the Warehouse. The Warehouse Node may parse the message,
or parts of the message that are to be moved to the Warehouse. The required format of the
message and its data contents are created and passed into a built SQL INSERT statement for
entry into the database.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 36

Figure 20 – Warehouse Nodes

5.5.11. Publish Subscribe System

Content and Topic based filtering

MQSeries Integrator provides content-based filtering on subscription, as well as the
hierarchical topic based filtering that is available on both publication and subscription. For
content-based filtering, the contents of elements within a message are evaluated by SQL
expressions to establish the content filtering result. The content filters can be stored in the
Dynamic Subscription Table. These filtered messages, when combined with the other
supplied or defined Message Broker functions can be transformed for different applications
and only the required parts of messages sent to the applications that subscribe to them. The
publish/subscribe function is represented as a Node, known as a Publication Node within
the message flow. The final action of a publish/subscribe node is the placing of a message on
one or more MQSeries queues.

Subscription Handling

MQSeries Integrator supports two types of subscription handling. If subscribing applications
for published data are known in advance of the publication, this is known as static
subscription and routing can be well defined in advance. Subscribing applications adding
subscriptions can change if the subscription set or changing subscriptions, this is referred to

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 37

as dynamic subscription, which is flexible in terms of changing business requests within a
system during runtime with no need to pre-register interest in particular message types.

The requests of subscribers to the publish/subscribe function take the form of messages
known as control messages. These give the subscriber full ability to create, delete and change
their subscriptions. The names for these messages are: Register Subscriber, Deregister Subscriber
and Request Update. For publishers there are different messages to meet their different needs.
These message names are: Publish and Delete Publication. These control messages are only
required if the client application is using the MQI programming interface and not the
MQSeries Application Messaging Interface or the MQSeries Java Messaging Service, as the
MQI will need to build the headers explicitly to call these functions.

The diagram illustrates of the flows involved in the handling of dynamic publication and
subscription requests.

Register Subscriber
Deregister Subscriber
Request Update
Register Publisher
Publish
Delete Publication
Deregister Publisher

Publisher

Broker

Subscriber

Broker

Request Update

Register Subscriber
Deregister Subscriber
Request Update

Publish

Register Publisher
Publish

Delete Publication
Deregister Publisher

Figure 21 – Message Broker: Dynamic Publication

The list of subscriptions is held persistently within the Message Broker. Changes made to the
subscription list are updated dynamically, and will take effect as soon as the message reaches
the broker. The key items in determining publish/subscribe actions are as follows: topic,
content, subscription point and destination. Any combination of these four items can be used
to create a unique subscription.

Where multiple Message Brokers exist, subscription information can be shared between
brokers to ensure that messages flowing into other brokers can be forwarded to the interested
parties. In the case where multiple brokers have subscriptions to a message flow, the
updating of subscriptions is also dynamic, with implementation of changes in subscriptions
being passed as quickly as a message from one broker to another.

Collectives

When defining brokers within a publish/subscribe network where users may publish
information at one broker and other users may subscribe at other brokers it can be more
efficient to connect and group brokers together. In MQSeries Integrator, this is termed a
Collective. Message brokers are all connected together in a point to point manner, and the

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 38

collectives are then interconnected in a tree hierarchy. This allows less individual
connections than a fully point to point environment but shorter chains than a tree hierarchy.

The graphic below illustrates a group of systems connected together as collectives.

Broker Domain

Operating System Image

Figure 22 – MQSeries Message Broker Collective

MQSeries Integrator Publish/Subscribe Security

The ability of users to publish information, or subscribe to information depends on the
setting of the Access Control Lists (ACLs). The ACLs are set on topics to which the message
is published. Publishers must have ACL permission to publish to the required topic.
Subscribers must have ACL permission to subscribe to the required topic. Subscribers may
request to receive persistent messages, but if denied by the ACLs they will still receive the
desired messages, but will not receive them persistently.

Topics are organized into a hierarchical tree structure. The tree structure leads to
downstream topics inheriting ACLs from root topics, unless explicitly stated. A subscriber
can use wild card topics, and the security policy handles this by applying the policy to the
individual leaf topics that are matched by the wild card topic, and ensuring that the ACLs for
each particular topic are fulfilled.

The diagram demonstrates the hierarchy of ACLs through the Topics.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 39

Hierarchies of Topics

Employee

Hire

Development Sales Shipping

Fire

Sales

Publish ACL: *
Subscribe ACL: *
Persistent ACL: *

Publish ACL: joe
Subscribe ACL: bill, mary
Persistent ACL: bill

Subscribe ACL: salesteam

Figure 23 – Hierarchies of Topics

5.5.12. Multi-Broker Domains

Only one Configuration Manager is required in a domain, whatever the number of brokers.
There can be more than one Control Center to drive the Configuration Manager if required.
Multiple message flows can exist in one message broker at any time. Message flows within a
broker may be distributed into separate execution groups within the broker, or they may all
exist within the same execution group. In addition, multiple brokers may be defined to give
the system designer the ability to have many different message flows running on different
physical machines at the same time, with each broker having a uniquely identified Queue
Manager, shared with no other brokers. Users may also want to be able to have many
separate instances of the same message flow to enable greater throughput of similar
messages through a specified message flow definition.

5.6. MQSI Control Center
The Control Center, a graphical user interface development tool, is provided with MQSI.
This allows the definition of Messages and Message Flows for use in the Broker, as well as
the definition and deployment of Brokers and Execution Groups.

In fact all required functions of the Message Broker for all users can be exercised within the
Control Center. Multiple concurrent users can use the Control Center. Each user operates
within their own workspace. All items to be worked upon by a user are checked out from
the Configuration Repository and are then available for update within the user’s workspace.
This item is then locked to that user for update. When the user wishes to deploy the changes
then the item is checked in. When an item is checked in, it is referred to as being shared, as
opposed to being in the user’s local workspace.

Different classes of users have different views within the Control Center. All operations are
available to Superusers. Other classes of users are Message Flow and Message Developers,
Message Flow and Message Assignors, Operations and also Security Administrators. The
class of the user will give access to different tabs within the GUI for the different permitted
operations.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 40

All the information held by the tool is accessed from the configuration repository. This is
held in XML format and accessed using the WebDAV protocol. By using the various
WebDAV commands the local and shared repositories (WebDAV Resource Servers) are
updated and kept in sync. As already mentioned previously the tools that were used in
MQSeries Integrator V1 to configure the Rules and Formatter are still shipped with the
product, and the use of these tools is still the appropriate way to configure the NEONRules
and NEONFormatter nodes. All other functions are controlled using the new GUI.

Format of the Control Center

For a Superuser, with access to all functions of the Control Center, the GUI will look as
shown below.

The diagram is a capture of the Control Center while viewing the assignment of message
flows to brokers.

Figure 24 – Control Center – Message Flow Assignment to Brokers

• The Message Sets Tab allows users to define for the Message Dictionary the format of
Message Sets used within the system. The messages stored within the Message Sets are
also defined here, as are the Compound Types used and the Fields and Elements that
make up the messages, along with associated Valid Values. The Message Tab integrates
into the Message Repository manager, and will allow for full definition of the format and
structure of messages. This will include the specification of the Custom Wire Format,
and importing and exporting C structures or COBOL copybooks.

• The Message Flows Tab displays a split screen, initially showing a palette with IBM
Primitives (IBM supplied Nodes) and the workspace to deploy the primitives when
defining a Message flow. To define a Message Flow, the system designer specifies a
Message Processing Node Type and then drags primitives from the palette onto the right
hand part of the screen and connects the nodes by wiring the terminals together. A

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 41

defined Message Flow that has been identified as a Message Processing Node Type can
then be used as an individual Node in subsequently defined Message Flows.

• The Assignments Tab (as displayed in the picture above) allows the System Designer to
create and allocate Execution Groups to Brokers. Already created message sets can be
assigned to Brokers, and created Message Flows can be assigned to Execution Groups.
As has been explained previously in this paper, the Message Flows run within Execution
Groups of which there can be a number in a Broker. This tab allows the user to set up
each broker, by means of Execution Groups, Message Sets and Message Flows, in the
configuration architected by the user. Once satisfied with the selections the configuration
can be deployed to the Broker, or Brokers affected.

• The Topology Tab is designed to allow a broker’s definitions to be registered and be
assigned a Queue Manager for deployment to machines where the appropriate
installation of MQSeries Integrator has been performed. In addition to creating brokers,
this tab also allows for the creation of Collectives. Once a broker has been created within
the Control Center, this tab can be used to assign it to a Collective, for it to be a part of a
connected Publish/Subscribe Network. Subsequent to assigning a broker to a collective,
it can then be connected to a broker in another collective to ensure that the network of
collectives is connected together.

• Once assigned, the tab will display all the defined brokers and collectives. In addition, it
will display which broker is in which collective, as well as a graphical representation of
which broker in each collective is connected to a broker in another collective.

• The Topics tab is designed to help the configuration of the Access Control of the
Publish/Subscribe Service. There are two alternative views available when using this
tab. One view is centered on the Topics and then displays on the right side the access for
Groups and Users. Another view is centered on Users and Groups and displays on the
right side the Topic Tree accessible by the Users and Groups. By using the functions of
this tab the ACLs for any point of the Publish and Subscribe topic tree can be set to allow,
deny or inherit the setting for users and groups to publish or subscribe to any topic or
sub-topic. The ability to publish, or subscribe to Persistent messages is also set here.

• The Subscriptions tab is designed to allow the administrator to display the list of
Subscribers and associated subscriptions. This will then allow the administrator to delete
subscriptions. This could be useful in the case of a subscriber leaving the company, and
wanting to cancel the subscriptions, or in the case of an application failure, preventing
any build up of unprocessed messages to an unresponsive application. This tab allows
items of information about subscriptions to be tracked. These are Topics, Clients,
Brokers, Subscription Points and Registration Date.

• The Operations tab provides a basic Systems Management interface for managing the
Broker Operations. This tab will allow an authorized user to see whether Brokers,
Execution Groups and Message Flows are active or quiesced, and will be able to perform
the appropriate operations on these entities. More sophisticated operations than those
provided within this tab will be available using plug-in modules available from system
management vendors.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 42

6 Application Connectivity (Adapters and Bridges)

6.1. Introduction
The EAI application will be interfacing with several systems. The interfaces between EAI
and other systems may require special mechanisms called adapters and bridges.

An adapter or a bridge is a piece of software that moves data between a message on a queue
and an application or environment. Adapters handle data inbound-to and outbound-from
the application or environment.

For The initial release of the Integrated Technical Architecture, three interfaces were
identified. The first interface is the connectivity between EAI and the Component Broker in
the Internet space. The second interface is the connectivity of EAI to a CICS legacy system.

This section will discuss the application connectivity requirements for The initial release of
the Integrated Technical Architecture:

• MQSeries Application Adapter

• MQSeries-CICS Bridge

• Database Nodes

6.2. MQSeries Application Adapter
MQSeries provides a mechanism for assured delivery of messages, which can be sent even
when the target is disconnected. It can be used to distribute work around a large number of
disparate systems in an environment where trying to propagate transactional two-phase
commit is not practical. The MQSeries application adapter provided by Component Broker
is used primarily to provide a semi-transparent integration between Component Broker
business applications and applications that based directly on MQSeries. The use of the
Component Broker MQSeries application adapter is shown below.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 43

Figure 25 – Component Broker MQSeries Application Adapter

The MQSeries application adapter supports communication between Component Broker
servers on Windows NT and Solaris and an MQSeries queue manager on the same local host.

6.2.1. Client application

A client application provides the presentation layer for the application.

It calls the Component Broker business objects to obtain and manipulate data.

6.2.2. Application

A customer-specified implementation of business objects and underlying business logic.

6.2.3. Application server

A Component Broker application server manages applications by instancing the managed
objects for applications and providing the services needed to manage access to data and other
resources.

An application server can connect to only one MQSeries queue manager during the lifecycle
of the server. Therefore, all applications on the server that need to use MQSeries should
connect to the same MQSeries queue manager. (All RDB connections for MQSeries provided
by applications on the same server should specify the same name for the Open string and
Database name properties.) If several applications need to connect to different MQSeries
queue managers, you should configure those applications onto different application servers.

6.2.4. Container

Represents and defines the characteristics of a specific queue manager.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 44

A queue manager is treated as just another persistent data store (although with some
different characteristics from a relational database) in which data can be stored recoverably
and retrieved within the scope of one or more transactions.

6.2.5. Homes

The homes within the container represent the various message formats available for use with
a specific queue managed by the queue manager.

OutboundMessage (OM) objects

Managed objects (within an OM home) that represent specific message instances on an
outbound queue.

InboundMessage (IM) objects

Managed objects (within an IM home) that represent specific message instances on an
inbound queue.

6.2.6. RDB Connection

Used to represent the characteristics of communication with a specific queue manager; for
example, the queue manager’s name and security policy.

From a client perspective, an MQSeries-backed application looks like any other Component
Broker-based client application that uses Component Broker transaction services.

Note: The MQSeries application adapter currently only support transaction container policy;
to throw an exception and abandon the call when used outside the scope of a transaction.
(Atomic transaction method calls are not supported.)

The managed objects representing messages behave like any other managed object that uses
the transaction services. Because such an object represents a message in a queue manager, its
life cycle is controlled by the standard messaging data access operations, insert, retrieve,
update, and delete (IRUD).

Component Broker, and its MQSeries application adapter framework drive these OM and IM
object instances and call the IRUD methods at appropriate times. For example, if a client
application is trying to get an inbound message that is not currently instanced in the
application server, it creates a new IM object and issues the retrieve method on it to get the
message from its queue.

If the client commits the transaction, the message is removed from its queue.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 45

6.3. MQSeries-CICS/ESA Bridge
The MQSeries-CICS/ESA Bridge enables an application, not running in a CICS environment,
to run a program or transaction on CICS/ESA and get a response back. This non-CICS
application can be run from any environment that has access to an MQSeries network that
encompasses MQSeries for MVS/ESA.

A program is a CICS program that can be invoked using the EXEC CICS LINK command. It
must conform to the DPL subset of the CICS API that is, it must not use CICS terminal or
syncpoint facilities.

A transaction is a CICS transaction designed to run on a 3270 terminal. This transaction can
use BMS or TC commands. It can be conversational or part of a pseudo conversation. It is
permitted to issue syncpoints.

6.3.1. When to use the CICS Bridge

The CICS Bridge allows an application to run a single CICS program or a ‘set’ of CICS
programs (often referred to as a unit of work). It caters for the application that waits for a
response to come back before it runs the next CICS program (synchronous processing) and
for the application that requests one or more CICS programs to run, but doesn't wait for a
response (asynchronous processing).

The CICS Bridge also allows an application to run a 3270-based CICS transaction, without
knowledge of the 3270 data stream. The CICS Bridge uses standard CICS and MQSeries
security features and can be configured to authenticate, trust, or ignore the requestor's user
ID.

Given this flexibility, there any many instances where the CICS Bridge can be used. For
example, when you want:

• To write a new MQSeries application that needs access to logic or data (or both) that
reside on your CICS server.

• Your Lotus Notes application to be able to run CICS programs.

• To be able to access your CICS applications from

• Your MQSeries Java client application.

• A web browser using the MQSeries Internet gateway.

6.3.2. How the CICS Bridge works

This section explains how the CICS Bridge works and the options you have when deciding
what level of security you want to use.

Points to note in respect of system setup:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 46

• Ensure that the MQSeries-CICS adapter is enabled.

• The CICS Bridge requires that both MQSeries and CICS are running in the same MVS
image.

• The MQSeries request queue must be local to the CICS Bridge, however the response
queue can be local or remote.

• The CICS bridge tasks must run in the same CICS as the bridge monitor. The user
programs can be in the same or a different CICS system.

6.3.3. Running CICS DPL programs

Data necessary to run the program is provided in the MQSeries message. The bridge builds a
COMMAREA from this data, and runs the program using EXEC CICS LINK. Figure 2 on
page 10 shows the step sequence taken to process a single message to run a CICS DPL
program.

The following shows the components and data flow to run a CICS DPL program.

Figure 26 – CICS DPL Transaction

The following takes each step in turn, and explains what takes place:

1. A message, with a request to run a CICS program, is put on the request queue.

2. The CICS Bridge monitor task, which is constantly browsing the queue, recognizes that a
‘start unit of work’ message is waiting (CorrelId=MQCI_NEW_SESSION).

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 47

3. Relevant authentication checks are made, and a CICS DPL Bridge task is started with the
appropriate authority (see “Security” on page 12 for more information).

4. The CICS DPL Bridge task removes the message from the request queue.

5. The CICS DPL Bridge task builds a COMMAREA from the data in the message and
issues an EXEC CICS LINK for the program requested in the message.

6. The program returns the response in the COMMAREA used by the request.

7. The CICS DPL Bridge task reads the COMMAREA, creates a message, and puts it on the
reply-to queue specified in the request message. All response messages (normal and
error, requests and replies) are put to the reply-to queue with default context.

8. The CICS DPL bridge task ends.

A unit of work can be just a single user program, or it can be multiple user programs. There
is no limit to the number of messages you can send to make up a unit of work.

6.3.4. Running CICS 3270 transactions

Data necessary to run the transaction is provided in the MQSeries message. The CICS
transaction runs as if it has a real 3270 terminal, but instead uses one or more MQ messages
to communicate between the CICS transaction and the MQSeries application unlike
traditional 3270 emulators, the bridge does not work by replacing the VTAM flows with
MQSeries messages.

Instead, the message consists of a number of parts called vectors, each of which corresponds
to an EXEC CICS request. Therefore the application is talking directly to the CICS
transaction, rather than via an emulator, using the actual data used by the transaction
(known as application data structures or ADSs).

The following shows the components and data flows to run a CICS 3270 transaction.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 48

Figure 27 – CICS 3270 Transaction

The following takes each step in turn, and explains what takes place:

1. A message, with a request to run a CICS transaction, is put on the request queue.

2. The CICS Bridge monitor task, which is constantly browsing the queue, recognizes that a
‘start unit of work’ message is waiting CorrelId=MQCI_NEW_SESSION).

3. Relevant authentication checks are made, and a CICS 3270 bridge task is started with the
appropriate authority (see “Security” on page 12 for more information).

4. The MQ-CICS bridge exit removes the message from the queue and changes task to run a
user transaction.

5. Vectors in the message provide data to answer all terminal related input EXEC CICS
requests in the transaction.

6. Terminal related output EXEC CICS requests result in output vectors being built.

7. The MQ-CICS bridge exit builds all the output vectors into a single message and puts this
on the reply-to queue.

8. The CICS 3270 bridge task ends.

A traditional CICS application usually consists of one or more transactions linked together as
a pseudo conversation. In general, the 3270 terminal user entering data onto the screen and
pressing an AID key starts each transaction. This model of application can be emulated by an
MQSeries application. A message is built for the first transaction, containing information
about the transaction, and input vectors. This is put on the queue.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 49

The reply message will consist of the output vectors, the name of the next transaction to be
run, and a token that is used to represent the pseudo conversation. The MQSeries
application builds a new input message, with the transaction name set to the next transaction
and the facility token set to the value returned on the previous message. Vectors for this
second transaction are added to the message, and the message put on the queue. This
process is continued until the application ends.

An alternative approach to writing CICS applications is the conversational model. In this
model, the original message might not contain all the data to run the transaction. If the
transaction issues a request that cannot be answered by any of the vectors in the message, a
message is put onto the reply-to queue requesting more data. The MQSeries application gets
this message and puts a new message back to the queue with a vector to satisfy the request.

6.4. Database Nodes
The EAI application will be interfacing with several external databases, such as Oracle and
DB2. This interface is integrated into the EAI system using the Database Nodes supplied
with MQSeries Integrator. The Database nodes are specialized nodes that perform a specific
function and access a particular database type. The Database nodes, through SQL
statements, allow the interaction with the RDBMS via and ODBC interface.

Database operations such as data insert and data update are performed using the Basic node
types. SQL statements will be the method for manipulating the data.

6.5. Additional Adapter Requirements
In future releases of the Integrated Technical Architecture, the EAI application will be
required to interface with SFA-selected COTS packages, such as Siebel and Oracle Financials.
Special, pre-built adapters are available to facilitate such interfaces. Potential implementation
options for Siebel and Oracle Financials are shown below.

6.5.1. Siebel Interface

New Era of Networks (NEON) provide an adapter (NEONadapter for Siebel) to interface
with Siebel applications.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 50

Figure 28 – NEON Interface with Siebel Applications

6.5.2. Oracle Financial Interface

NEON also provides an adapter that may be used for the Oracle Financial interface.

Figure 29 – NEON Interface with Oracle Applications

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 51

7 Business Process Management (MQSeries Workflow)

MQSeries Workflow is a workflow management system that will assist SFA in defining and
maintaining business processes. MQSeries Workflow provides a process automation system
for managing both data and applications.

7.1. MQSeries Workflow Architecture

7.1.1. Scalability

The MQSeries Workflow architecture is highly scalable in numbers of transactions, users and
applications. MQSeries Workflow uses IBM DB2 UDB database to store the runtime data for
production and MQSeries messaging for its client/server messaging.

MQSeries Workflow is designed to scale vertically and horizontally. By scaling vertically,
MQSeries Workflow takes advantage of the processor idle capacity. It also takes advantage
of multiple processes on the same system. With this scalability, MQSeries Workflow
provides any easier path to migrate from Intel based systems to RISC and mainframe
technology.

MQSeries Workflow also scales horizontally by allowing several workflow servers to run
using the same runtime database, and by allowing multiple execution servers.

7.1.2. Multi-Tier Architecture

The components of MQSeries Workflow system are designed to be a three-tier structure. The
system consists of three logical tiers and two physical tiers.

Tier one: Client components

Tier one represents the client APIs of MQSeries Workflow and the clients that use three APIs.
Clients are responsible for executing the program activities that interact with users. The
communication with servers is through MQSeries.

Tier two: Server components and Buildtime

Tier two represents the server components and Buildtime of MQSeries Workflow. The
server components are responsible for managing the execution of processes at Runtime. The
component of the second tier can be distributed across several machines to achieve load
balancing. MQSeries is used for the communication between server components as well as
between server components and Builtime. The server components can reside on one or more
physical machines. The system components that are installed on one physical machine are
called a node.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 52

Tier three: Database Server

Tier three represents the Database Server. MQSeries Workflow uses DB2 Universal Database
to store the process models and process-relevant data for the System Group. The Runtime
database is also involved in the navigation logic between the process steps at Runtime, using
SQL calls. This includes status and setup information. The DB2 transport is used for the
communication between the Database Server and its clients.

7.2. Transactional Integrity
The MQSeries Workflow production requirements has two opposing requirements for an
integrated distributed system:

• High volume and high performance on one side

• Maximum data integrity on the other side.

MQSeries Workflow ensures that no data is lost and the system is in a consistent state, even
after system interruptions. Workflow servers’ process workflow client requests, status
information is stored in the workflow runtime database, and application functions are
processed as part of workflow activities. MQSeries Workflow support full transactional
semantics on the server side as well as on the application side. It exploits all transactional
capabilities of messaging and relational databases on all platforms. For two-phase commit
coordination, either MQSeries or the OS/390 Resource Recovery System (RRS) is used. This
ensures a maximum of workflow data integrity, and builds upon the transactional strengths
and performance of both MQSeries and DB2 UDB.

7.3. MQSeries Workflow Release Schedule
MQSeries Workflow will be installed in The initial release of the Integrated Technical
Architecture. However, no business applications will use the workflow components. In
future releases, MQSeries Workflow may be used by SFA in the following ways:

• The integration and alignment of the SFA business processes.

• Integration of the applications used by the SFA via the business processes.

• To better accommodate the rapid changes in the SFA requirements

• To enforce and support the execution of SFA business processes such as quality,
audibility, and productivity.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 53

8 Queue Design Guidelines

A queue is an MQSeries object owned by a queue manager upon which applications can put
or retrieve messages. Applications access a queue by using the Message Queue Interface
(MQI). Before a message can be put on a queue, the queue must already exist. Each queue
must have a name that is unique to the owning queue manager. Before an application can
use a queue, it must open the queue, specifying what it wants to do with it. For example, the
application can open a queue to:

• Browse messages only (do not delete them)

• Retrieve messages

• Put messages on the queue

• Inquire about the attributes of the queue

• Set the attributes of the queue

For a complete list of the options related to opening a queue, see the description of the
MQOPEN call in the MQSeries Application Programming Reference manual.

There are different types of queues. These types include:

• Local: a local queue is managed by the queue manager to which the application is
connected

• Remote: a remote queue is managed by a queue manager other than the one to which the
application is connected

• Alias: an alias queue points to another queue

• Model: a model queue is a template for queue definition

• Dynamic: a dynamic queue is a temporary queue defined based on a model queue

In SFA’s technical environment, the use of alias queues is discouraged, unless a business
need dictates its use (e.g. limiting security access to certain queues). Applications putting
messages to remote queues will use the remote queue definition. This allows the application
to only specify the remote queue name and not be required to know the remote queue
manager name. Model and dynamic queues should be used only when a business need
dictates their use.

8.1. Opening and Closing Queues
Before opening a queue using the MQOPEN call, the application must connect to a queue
manager. The application can then use the MQOPEN call to open a queue. The application
can also then use the MQCLOSE call to close a queue. When an application opens a queue,
the application receives an object handle for that queue. This handle is used in subsequent
calls to get or put messages. The same queue can be opened more than once; each open call

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 54

creates a new object handle. However, most applications will only need to open a given
queue once.

Once an application has opened a queue, the application has access to that queue until it
closes the queue. The MQOPEN call is costly in terms of time, so once an application has
opened a queue and plans to use it in the future, keep the queue open. The exception to this
is when an application only needs to put one message. The MQPUT1 call was designed for
this case – this call opens a queue, puts the message, and closes the queue, eliminating the
need to use the MQOPEN and MQCLOSE calls.

Queues are automatically closed when an application closes its connection to the queue
manager. However, it is a good practice to close all queues before disconnecting from the
queue manager.

8.1.1. MQOPEN Call

As input to the MQOPEN call, the application must supply:

• A connection handle. Use the connection handle returned by the MQCONN call.

• A description of the object you want to open, using the object descriptor structure
(MQOD).

• One or more options that control the action of the call.

The output from MQOPEN is:

• An object handle that represents your access to the queue. Use this as input to any
subsequent MQI calls for this queue.

• A modified object-descriptor structure, if the application is creating a dynamic queue.

• A completion code.

• A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an
indication as to why the call failed.

8.1.2. MQCLOSE Call

As input to the MQCLOSE call, the application must supply:

• A connection handle. Use the same connection handle used to open the queue.

• The handle of the queue you want to close. This comes from the output of the MQOPEN
call.

The output from MQCLOSE is:

• A completion code.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 55

• A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an
indication as to why the call failed.

8.2. Putting Messages On A Queue
To put messages on a queue, an application must use the MQOO_OUTPUT option when
issuing the MQOPEN call. After the queue has been opened using this option, the
application can issue an MQPUT call to put a message on the open queue. If the application
is only putting one message and will not use the queue again, use the MQPUT1 call.

8.2.1. MQPUT Call
As input to the MQPUT call, the application must supply:
• A connection handle. Use the connection handle that was returned when the application

issued the MQCONN call.

• A queue handle. Use the queue handle that was returned when the application issued
the MQOPEN call for this queue.

• A description of the message the application is putting on the queue. This is in the form
of a message descriptor structure.

• Control information, in the form of a put-message options structure. This options
structure needs to be redefined for every MQPUT call.

• The length of the application data contained within the message.

• The application data itself.

The output from the MQPUT call is:

• A reason code.

• A completion code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an
indication as to why the call failed.

8.3. Getting Messages From A Queue
To open a queue so that the messages on that particular queue can be browsed (does not
remove the message from the queue), use the MQOPEN call with the MQOO_BROWSE
option. To get (and remove) messages from a queue, an application must use the
MQOO_INPUT_AS_Q_DEF, MQOO_INPUT_SHARED, or MQOO_INPUT_EXCLUSIVE
option when issuing the MQOPEN call. Selection of one of these three options is used to
specify if the application opens the queue in exclusive, or shared, mode. See the MQSeries
Application Programming Guide for more information. After the queue has been opened using

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 56

one of these options, the application can issue an MQGET call to get a message from the open
queue.

By specifying the MsgId and/or CorrelId fields in the message descriptor structure, the
application can search the queue for a particular message. If the application uses MQGET
call more than once (for example, to step through the messages in the queue), it must set the
MsgId and CorrelId fields of this structure to null after each call. This prevents the call from
filling these fields with the identifiers of the message that were retrieved, and therefore
getting messages with the same identifiers as the previous message.

If the fields in the message descriptor structure are not specified to search for a particular
message, the MQGET call will retrieve the first message in the queue.

8.3.1. MQGET Call

As input to the MQGET call, the application must supply:

• A connection handle. Use the connection handle that was returned when the application
issued the MQCONN call.

• A queue handle. Use the queue handle that was returned when the application issued
the MQOPEN call for this queue.

• A description of the message the application wants to get from the queue. This is in the
form of a message descriptor structure.

• Control information in the form of a get message options structure. This control
information describes if the application is browsing or removing messages. The control
information also describes if the MQI call waits (and how long it waits) for a message or
if the call returns immediately.

• The size of the buffer you have assigned to hold the message.

• The address of the storage location in which the message must be put.

The output from the MQGET call is:

• A reason code

• A completion code

• The message in the buffer area specified, if the call completed successfully

• The options structure, modified to show the name of the queue from which the message
was retrieved

• The message descriptor structure, with the contents of the fields modified to describe the
message that was retrieved

• The length of the message

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 57

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an
indication as to why the call failed

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 58

9 Queue Manager Design Guidelines

A queue manager supplies applications with MQSeries services. An application must have a
connection to a queue manager before it can use the services of that queue manager. An
application can make this connection explicitly (using the MQCONN call), or the connection
can be made implicitly. For example, CICS for MVS/ESA and CICS/MVS programs do not
need to explicitly connect to a queue manager, because the CICS system itself is connected to
a queue manager. However, for portability it is recommended that CICS for MVS/ESA and
CICS/MVS programs use the MQCONN and MQDISC calls.

9.1. Connecting To and Disconnecting From a Queue Manager
To connect to a queue manager, an application must use the MQCONN call. To disconnect
from a queue manager, an application must use the MQDISC call.

9.1.1. MQCONN Call

As input to the MQCONN call, the application you must supply a queue manager name. To
connect to the default queue manager, specify a queue manager name consisting entirely of
blanks or starting with a null character.

The output from MQCONN is:

• A connection handle. Use this handle in subsequent MQI calls associated with this queue
manager.

• A completion code.

• A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an
indication as to why the call failed. If the reason code indicates that the application is already
connected to that queue manager, the connection handle that is returned is the same as the
one that was returned when the application first connected. So the application probably
should not issue the MQDISC call in this situation because the calling application will expect
to remain connected. The MQCONN call fails if the queue manager is in a quiescing state
when you issue the call, or if the queue manager is shutting down.

9.1.2. MQDISC Call

As input to the MQDISC call, the application must supply the connection handle that was
returned by MQCONN when the application connected to the queue manager.

The output from MQDISC is:

• A completion code.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 59

• A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an
indication as to why the call failed.

9.2. MQ Series Queue Manager Options
Each physical server MQSeries messaging resides on will have a queue manager located on
that server. There are two methods to connect multiple queue managers: Distributed
Queuing and Queue Manager Clusters.

• Distributed Queuing

Distributed Queuing is a method that independent queue managers use to inter-
communicate. Typically two queue managers are connected via sender and receiver
channels. In addition, a transmission queue has to be defined to send messages from one
queue manager to another, and a remote queue definition is required for every queue
that resides in the remote queue manager and to which messages are to be sent.

• Queue Manager Clusters

This facility allows a name to be given to a collection of queue managers, and was
introduced in MQSeries Version 5 for AIX, HP-UX, OS/2, Sun Solaris and Windows NT;
and MQSeries for OS/390 Version 2.1. It simplifies administration by providing a single
system image, and it supports dynamic workload balancing.

Connecting multiple queue managers using MQSeries clustering facility provides two
major functions: (1) simplifies MQSeries object administration and (2) provided workload
balancing and failover capabilities. It simplifies the MQSeries administration because it
requires fewer object definitions. Transmission queues and Remote Queues are
automatically defined and the channel initiator is automatically started when the queue
manager starts.

9.3. Queue managers recommendations
A queue manager is in effect a storage container (of queues), and potentially an active
daemon managing its content. The first step in the configuration is to start creating the queue
managers needed.

9.3.1. Don’t identify any single Queue Manager as the default

Some environments can tolerate an exception, most notably CICS/ESA, where any CICS
region is always connected to a single Queue Manager.

Most platforms can have more than one queue manager defined on a system. Don't pick one
as the default, as this often results in selecting the wrong queue manager on a particular
system.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 60

Even when there is only one queue manager configured, don't define it as the default. Doing
so increases the probability for error if another queue manager should be added at a later
date.

9.3.2. Pass the connection name as program parameter

This allows a program to run unchanged on any Queue Manager. This provides the
capability for multiple concurrent instances; or a queue driven application could be moved to
a different queue manager without impacting the application code.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 61

10 MQSeries Naming Standards

This section defines naming standards for MQSeries objects across SFA’s enterprise technical
architecture. It is recommended that these standards be adhered to when choosing names for
new MQSeries objects.

10.1. Common Rules
All MQSeries names should follow MQSeries naming conventions, rather than the standard
for object names on each supported platform. Key standards and guidelines:

• Don’t use lower case letters

MQSeries allows both upper and lower case letters in its names. However, MQSeries
names are case-sensitive. Using lower and upper case characters for object names is a
common source for naming errors.

• Don’t use % in names

This character is valid in all MQSeries names, although it is not commonly used in other
names across platforms.

• Choose meaningful names within the constraint of the standard

Using meaningful names aids the MQSeries Administrator in maintaining the MQSeries
environment

There is no implied structure, or hierarchy, in an object name, such as you might find on
many systems' file names. MQSeries just compares the name strings.

These standards do recommend using hierarchical names under certain conditions. One
such example is to use a suffix where there are multiple “versions” of an object.

• Document object names and always include a description

All objects have a DESCR attribute for this purpose. MQSeries takes no action on the
value, but it provides additional information as to the function of the queue.

• Save the definitions

There are a number of reasons for saving the definitions:

q" In the case of a system failure objects may need to be recreated. To perform this
function, the definitions need to be saved separately from the queue manager.

q"They can be used to reset the attributes to a known state. For example if triggering
has been turned off, or GET or PUT disabled, it is helpful to be able to restore the
objects to their initial state.

q"The definitions can supplement the MQSeries documentation.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 62

10.2. Queue Manager
A queue manager provides the messaging and queuing services to application programs
through Message Queue Interface (MQI) program calls. The following guidelines should be
followed when naming queue managers:

• Assign unique names to all queue managers

This recommendation can often cause significant problems if queue manager names are
not unique. (On MVS, the queue manager name must also be distinct from other
subsystem names on the same system.)

A queue manager can be understood as a “container” for queues and related objects.
There is typically one per system, but additional queue managers can be defined.

Queue Managers with the same name can be configured to exchange messages - by using
Queue Manager aliases. This is strongly discouraged. There are some examples where
this can lead to ambiguity, and messages can then be sent to the wrong queue manager.

q" If ReplyToQMgr is left blank in the Message Descriptor, MQSeries inserts the actual
local Queue Manager name, not its alias.

q"Dead Letter Queue messages identify the real Queue Manager, not any alias.

• Don’t copy documentation examples

Copying the documentation examples provided with the installation files is an easy way
to produce queue managers with duplicate names. Plan for the names of queue
managers ahead of time.

• Keep the queue manager name short and meaningful

A recommendation would be to make queue manager names the same as the network
host name. However, keep the following points in mind:

q"On MVS, the queue name has to be the same as the host name. The queue manager
name corresponds to the MVS subsystem name. Therefore, the queue manager name
is restricted to 4 characters.

q"Many queue managers use the first 8 characters when generating unique message
identifiers.

q"Channel names, which by convention are derived from queue manager names, are
limited to 20 characters.

q" If there is no obvious name, most users would adopt a convention for constructing a
queue manager name. Make sure that the convention provides for further expansion,
particularly where the restricted names on MVS are concerned.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 63

Some naming examples are illustrated below. A numeric identifier may be appropriate
where a processor (or hardware cluster) has multiple queue managers.

Example: CCCDDFNN

CCC = city identifier

DD = company division

F = queue manager function (e.g. Test)

NN = numeric identifier

Example: SSSCCFNN

SSS = stock ticker symbol

CC = city identifier

F = queue manager function

NN = numeric identifier

MVS Example: ADDX

A = geographic area

DD = company division

X = distinguishing identifier

• For a Queue Manager alias, add a suffix to the name

The main use for this would be to support classes of service. There are fewer constraints
on the length of an alias name; it can be more than eight (or four on MVS) characters for
example.

In fact this feature is usually related to defining multiple channels between a pair of
queue managers. In this case, use the same suffix for associated channels and queue
manager aliases.

10.3. Local Queues
A local queue object defines a local queue belonging to the queue manager to which
applications are connected. The following guidelines should be adhered to when naming
local queues:

• Local queue names can be up to 48 characters long. They should be short, but long
enough to be meaningful.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 64

• Local queue names should not include the name of the queue manager or an indication
of the platform used.

• Local queue names should not indicate that the queue is local.

• Local queue names should not include the words local or queue (unless relevant in the
context of the application).

• Local queue names should be of the form:

BusinessUnit.AppName.AppID[.AppID]

q"BusinessUnit is up to four characters indicating the name of the business unit using
this queue. This high-level qualifier will be useful when applications from multiple
business units share the same machine/queue manager.

q"AppName is up to 8 characters giving the name of the application using this queue
(assigned by the business unit).

q"AppID is a suffix of up to 8 characters giving the application unique identifier
(assigned by the application group). If necessary, another identifier (up to 8
characters) may follow the first identifier. These identifiers will be meaningful in the
context of the application.

Examples:

BU.USCASH.INTRADAY

BU.CASA.GI0

BU.USCASH.INTRADAY.NYC

10.4. Remote Queues
A remote queue object identifies a queue belonging to another queue manager. The remote
queue is usually given a local definition. The definition specifies the name of the remote
queue manager where the queue exists as well as the name of the remote queue itself. The
information specified when defining a remote queue object enables the queue manager to
find the remote queue manager, so that any messages destined for the remote queue go to
the correct queue manager. The following guidelines should be adhered to when naming
remote queues:

• Remote queue names can be up to 48 characters long. They should be short, but long
enough to be meaningful.

• Remote queue names should not include the name of the queue manager or an indication
of the platform used.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 65

• Remote queue names should not indicate that the queue is remote.

• Remote queue names should not include the words remote or queue (unless relevant in
the context of the application).

Examples:

A. Destination queue: BU.CASA.GI005

Remote queue name: BU.CASA.GI005

B. Destination queue: BU.USCASH.INTRADAY

Remote queue name: BU.USCASH.INTRADAY.NY

Remote queue name: BU.USCASH.INTRADAY.SS

10.5. Alias Queues
An alias queue object enables applications to access queues by referring to them indirectly in
MQI calls. When an alias queue name is used in an MQI call, the name is resolved to the
name of a message queue at run time. This enables changes to the queues that applications
use without changing the application itself in any way. The following guidelines should be
adhered to when naming alias queues:

• Alias queue names can be up to 48 characters long. They should be short, but long
enough to be meaningful.

• Alias queue names should not include the name of the queue manager or an indication of
the platform used.

• Alias queue names should not indicate that the queue is an alias.

• Alias queue names should not include the words alias or queue (unless relevant in the
context of the application).

• Alias queue names should be of the form:

BusinessUnit.AppName.AppID[.AppID]

q"BusinessUnit is up to four characters indicating the name of the business unit using
this queue. This high-level qualifier will be useful when applications from multiple
business units share the same machine/queue manager.

q"AppName is up to 8 characters giving the name of the application using this queue
(assigned by the business unit).

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 66

q"AppID is a suffix of up to 8 characters giving the application unique identifier
(assigned by the application group). If necessary, another identifier (up to 8
characters) may follow the first identifier. These identifiers will be meaningful in the
context of the application.

Example:

actual queue: BU.USCASH.G3452

alias queue: BU.USCASH.INTRADAY.NYC

10.6. Model and Dynamic Queues
The model queue object defines a set of queue attributes that are used as a template for a
dynamic queue. The queue manager creates dynamic queues when an application makes an
open queue request specifying a queue that is a model queue. The dynamic queue that is
created in this way is a local queue whose name is specified by the application and whose
attributes are those of the model queue.

10.6.1. Model Queue Naming Standards

The following guidelines should be adhered to when naming model queues:

• If an application area needs to define a model queue with specific attributes (triggering
information or special storage classes), then the model queue name should be of the form:

BusinessUnit.AppName.MODEL.AppID[.AppID]

q"BusinessUnit is up to four characters indicating the name of the business unit using
this queue. This high-level qualifier will be useful when applications from multiple
business units share the same machine/queue manager.

q"AppName is up to 8 characters giving the name of the application using this queue
(assigned by the business unit).

q"MODEL is a literal indicating this is a model queue.

q"AppID is a suffix of up to 8 characters giving the application unique identifier
(assigned by the application group). If necessary, another identifier (up to 8
characters) may follow the first identifier. These identifiers will be meaningful in the
context of the application.

Example: BU.USCASH.MODEL.INTRADAY

10.6.2. Dynamic Queue Naming Standards

Dynamic queue names should be of the form:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 67

BusinessUnit.AppName.DYNQ.AppID[.AppID]

q"BusinessUnit is up to four characters indicating the name of the business unit using
this queue. This high-level qualifier will be useful when applications from multiple
business units share the same machine/queue manager.

q"AppName is up to 8 characters giving the name of the application using this queue
(assigned by the business unit).

q"DYNQ is a literal indicating this is a dynamic queue.

q"AppID is a suffix of up to 8 characters giving the application unique identifier
(assigned by the application group). If necessary, another identifier (up to 8
characters) may follow the first identifier. These identifiers will be meaningful in the
context of the application.

Example: BU.USCASH.DYNQ.INTRADAY.REPLY

10.7. Transmission Queues
A transmission queue temporarily stores messages that are destined for a remote queue
manager. Transmission queues must be defined for each remote queue manager that a local
queue manager will send messages to. It is possible to associate several transmission queues
with different characteristics with a remote queue manager. This allows different classes of
transmission service. The following guidelines should be adhered to when naming
transmission queues:

• Transmission queue names will include the name of the adjacent (i.e. directly connected)
queue manager. The transmission queue name will be the name of the destination queue
manager only in the case where the destination queue manager is directly connected with
the sending queue manager. Otherwise, the transmission queue name will be the name
of some other queue manager that will play the middle party in a multi-hop message
transfer to the destination queue manager.

• If there is only one channel to the queue manager, use the exact name of the adjacent
queue manager.

• If there will be multiple channels to the queue manager, use the adjacent queue manager
name followed by a dot and some class of service.

• If the exact queue manager name is not used, appropriate queue manager alias
definitions need to be provided to allow MQSeries to perform queue manager name
resolution.

• Transmission queue names should be of the form:

AdjacentQueueManagerName[.ClassOfService]

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 68

Examples:

SFANYC_QM

SFANYC_QM.BATCH

10.8. Dead Letter Queues
A dead-letter queue (also known as an undelivered-message queue) receives messages that
cannot be routed to their correct destinations. This occurs when, for example:

• The destination queue is full

• The message cannot be put on the destination queue

• The sender is not authorized to use the destination queue

• The destination queue does not exist

The following guidelines should be adhered to when naming dead-letter queues:

• Dead-letter queues should be of the form: CITI.DLQ

q"CITI is a literal standing for Department of Education . This is included to remain
consistent with the business unit identifier of naming standards for other queue
types. If multiple business units share the same queue manager, there can be only
one dead-letter queue. Therefore, the literal CITI is used as a common business unit
name qualifier.

q"DLQ is a literal standing for the dead letter queue.

Example: CITI.DLQ

10.9. Initiation Queues
An initiation queue receives trigger messages, which indicate that a trigger event has
occurred. A trigger event is caused by a message that satisfies the specified conditions being
put onto a queue. Messages are read from the initiation queue by a trigger monitor
application that then starts the appropriate application to process the message. If triggers are
active, at least one initiation queue must be defined for each queue manager. The following
guidelines should be adhered to when naming initiation queues:

• Initiation queue names should be of the form:

BusinessUnit.INITQ.[Identifier]

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 69

q"BusinessUnit is up to four characters indicating the name of the business unit using
this queue. This high-level qualifier will be useful when applications from multiple
business units share the same machine/queue manager.

q" INITQ is a literal standing for the initiation queue.

q" Identifier is up to 8 characters giving an optional unique identifier for this initiation
queue. This identifier will be a CICS region name for CICS regions, the literal
BATCH for MVS batch work, or a meaningful string for other platforms.

Example: CITI.INITQ.BATCH

10.10. Processes
A process definition object defines an application to an MQSeries queue manager. Typically
in MQSeries, an application puts or gets messages from one or more queues and processes
them. A process definition object is used for defining applications to be started by a trigger
monitor. The definition includes the application ID, the application type, and application
specific data. The following guidelines should be adhered to when naming processes:

• Process names should not include the name of the queue manager or an indication of the
platform used.

• Process names should not indicate that the object is a process.

• All process names should be of the form:

BusinessUnit.AppName.AppID[.AppID].PROCESS

q"BusinessUnit is up to four characters indicating the name of the business unit using
this queue. This high-level qualifier will be useful when applications from multiple
business units share the same machine/queue manager.

q"AppName is up to 8 characters giving the name of the application using this queue
(assigned by the business unit).

q"AppID is a suffix of up to 8 characters giving the application unique identifier
(assigned by the application group). If necessary, another identifier (up to 8
characters) may follow the first identifier. These identifiers will be meaningful in the
context of the application.

q"PROCESS is literal indicating this MQSeries object is a process definition.

Example: BU.CASA.GI005.RECEIVE.PROCESS

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 70

10.11. Channels
A channel provides a communication path. There are two types of channel, message
channels and MQI channels. A message channel provides a communication path between
two queue managers on the same, or different, platforms. The message channel is used for
the transmission of messages from one queue manager to another, and shields the
application programs from the complexities of the underlying networking protocols. A
message channel can transmit messages in only one direction. If two-way communication is
required between two queue managers, two message channels are required.

An MQI channel connects an MQSeries client to a queue manager on a server machine. It is
for the transfer of MQI calls and responses only and is bi-directional. A channel definition
exists for each end of the link. The following guidelines should be adhered to when naming
channels:

• Channel names can be up to 20 characters long.

• Channel names should be of the form:

SendingQM.ReceivingQM[.ClassOfService]

q"SendingQM is the name of the sending queue manager (without the _QM).

q"ReceivingQM is the name of the receiving queue manager (without the _QM).

q"ClassOfService is optional and is used to distinguish between different classes of
service between the same two queue managers. This qualifier is limited to the
number of characters remaining after the sending and receiving queue manager
names have been combined to form the channel name.

Based on the above channel naming standard, channel names can always be interpreted
as FromQueueManager.ToQueueManager without ambiguity.

Examples:

SFANYC.CITISS

SFASS.CITINYC.BATCH

10.12. MQSeries Integrator
MQSeries has been enhanced with enterprise application integration (EAI) functionality.
MQSeries Integrator supplies rules-driven routing and data transformation , which simplifies
the task of integrating diverse applications across the enterprise. MQSeries Publish and
Subscribe supports routing of topic-based messages to dynamic subscribers based upon the
content of the message. These two facilities are compatible, and can be used to construct
complex messages and routing based on business logic.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 71

The same general principles can also be used when naming queues associated with these
functions:

• Subscriber queues are in fact application input queues, so application naming standards
apply to these queues.

• MQSeries Integrator has input queues, which can be given a hierarchical name – just as if
the EAI tool was an application, and provides the first part of the queue name.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 72

11 Application Interface Programming Options

There is a wide range of options for communicating with MQSeries programs including new
interfaces for message content as well message delivery. Programs written using any of these
message delivery styles can communicate with each other, and with programs written in any
of the other MQ delivery styles.

11.1. Message Delivery

11.1.1. MQI

The Message Queue Interface (MQI) is the common API across all platforms. The calls made
by the applications running on each platform are common. This allows application
programmers to focus on the business logic of the application, rather than the interface
differences of each platform. This makes it much easier to write and maintain applications,
as well as facilitate migration of applications from one platform to another as required by
changing business needs.

The following figure represents the MQI.

Application Program

MQI

Queue Manager

M
Q

CO
NN

M
Q

D
IS

C

M
Q

O
PE

N

M
Q

CL
O

SE

M
Q

PU
T

M
Q

SE
T

M
Q

IN
Q

M
Q

PU
T1

M
Q

G
ET

M
Q

CM
IT

M
Q

B
AC

K

Process
Definition

Object

Queue
Manager
Object

Queue
Object

Figure 30 – Message Queue Interface

11.1.2. JMS

Java Message Service (JMS) is supported by an MQSeries implementation of this Java
standard API for Enterprise Messaging Services. Using JMS, applications can communicate

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 73

with other MQSeries JMS applications, with applications written to the MQI, or to the
Application Message Interface (AMI).

11.1.3. AMI

The MQSeries AMI can be used to build client applications, and the AMI will automatically
build any required headers as specified using the AMI, including the new RFH2 headers.
The AMI is designed to simplify the task of the application programmer, while enabling the
more advanced functions and message broker facilities to be used.

AMI is a high level API that moves many functions normally performed by messaging
applications into the middleware layer, where a set of policies defined by the enterprise is
applied on the application's behalf. Policies hold details of how messages are to be handled,
for example, priority, confirmation of delivery, timed expiry. IBM provides a suite of
common policies, and an open policy handler framework that allows additional policies to be
created by third-party software vendors or the enterprise.

11.2. Message Content

11.2.1. XML

eXtensible Markup Language (XML) is an industry-wide standard for self-defining
messages. It enables diverse systems and databases to understand each other's data (for
example, to identify fields) by indicating both the content and the role of the data.

XML is supported in MQSeries Integrator Version 2 and MQSeries Workflow Version 3.2;
XML will be supported within MQSeries Messaging via the Common Messaging Interface.

11.2.2. CMI

Common Message Interface (CMI) is a logical message construction API, used in conjunction
with a message delivery API (for example, MQI, AMI, or MQSeries Support for JMS). It
dynamically constructs and parses messages, interrogating and modifying them as
appropriate. It supports XML messages, and can use a message dictionary to validate
message formats or substitute default field values, for example.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 74

12 EAI Common Error Handling Guidelines

Whenever possible, the queue manager returns any errors as soon as an MQI call is made.
The three most common errors that the queue manager can report immediately are described
in this section.

12.1. Failure of an MQI Call
An example of an MQI call failure is being unable to put a message to a queue because the
queue is full. The completion code and return code of the MQI call specify the nature of the
failure. Applications should inspect these codes for every MQI call and be able to handle all
possible return codes.

12.2. System Interruption
The queue manager is an example of a system component needed by the application and
when the queue manager is interrupted, the application encounters an error. Applications
must ensure no data is lost due to this sort of interruption. To ensure no data loss,
applications will get and put messages under syncpoint. This syncpoint activity can be
controlled by the queue manager or by some external resource coordinator (e.g. CICS,
Encina, etc.).

12.3. Unable to Process Messages
Messages containing data that cannot be processed successfully are known as poisoned
messages. When applications operate under syncpoint, if the application cannot successfully
process a message, the MQGET call is backed out. The queue manager maintains a count (in
the BackoutCount field of the message descriptor) of the number of times this happens.
Messages whose backout counts increase over time are being repeatedly rejected by the
application – the application should be designed to handle such situations.

12.4. Responding to Errors
Applications should respond in a similar manner to errors returned by MQI calls. One
possible way to implement this common error handling methodology is to provide error-
handling routines for the application developer. Use of these common error-handling
routines ensures that all application programmers handle MQSeries errors in the same way
and do not have to write their own error handling routines.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 75

13 EAI Operations Environment Considerations

This chapter describes some operational considerations for the EAI architecture, including
ways in which to monitor MQSeries components.

13.1. Stopping queue managers
If a queue manager in the message broker needs to be stopped, avoid stopping it
immediately in the first instance, or the result can be that it is subsequently slower to restart.

A better approach is to quiesce the queue manager first. Well-behaved channels and
connected programs are expected to detect this condition; they may continue in order to
preserve work already done, but are expected to disconnect within a reasonable time. (Five
minutes is usually considered an acceptable maximum.) The queue manager stops when all
programs have disconnected.

In particular, avoid canceling distributed queue managers. A checkpoint is written when a
queue manager is ended by command. Canceling a queue manager would not take that
checkpoint, and so it would need longer to restart.

13.2. Dead Letter Queue
If MQSeries can detect an error synchronously, it is reported directly to the application. If a
message can not be delivered after that it is a candidate for the Dead Letter Queue. This
preserves a message that can not be processed immediately, without stopping valid
messages in the meantime.

The facility is available on all platforms except MQSeries for Windows V2.

MQSeries for AS/400 documentation refers to it as the “undelivered-message” queue, but is
otherwise the same.

Although normally described as a channel function, there are other MQSeries components
that write to the Dead Letter Queue, including Trigger Monitors and the IMS Bridge.

Include a Dead Letter Queue on all queue managers.

On all queue managers, use a local queue called SYSTEM.DEAD.LETTER.QUEUE. This is
created automatically by some MQSeries platforms. On those platforms that do not, create a
queue with this same name; it will cause less confusion to use a common name everywhere.

It is still necessary to configure the queue manager, by identifying this queue in its DEADQ
attribute. If a Dead Letter Queue is required, and is not available, a channel will fail.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 76

Some users have avoided defining a Dead Letter Queue in order to detect errors sooner, but
that is not recommended. The problem with this approach is that one rogue message is
sufficient to stop all messages across a channel.

Consider ways to avoid unnecessary DLQ messages.

Some platforms allow an automatic retry if a message can not be delivered immediately. It is
specified by parameters on a receiving channel, and the conditions can be changed through a
Retry Exit. The channel is paused while such retry is in progress. Thus, transient errors can
be tried again to avoid messages being written to the Dead Letter Queue unnecessarily.

Outside the scope of this document, note that applications can also request undelivered
messages are discarded, using the MQRO_DISCARD option; often used in combination with
Exception With Full Data, to return the message to its sender.

Process the undelivered messages.

Messages that are put on the Dead Letter Queue take the form of the original message data,
preceded by a dead letter header - defined by the MQDLH structure. The header includes
the intended destination queue, and queue manager, for the message, and the Reason it
could not be delivered.

Listing the contents can be sufficient for a test system. A production environment such as a
message broker must have a process, triggered or scheduled at intervals, to dispose of the
messages appropriately. Some platforms supply a Dead Letter Queue Handler (rules
driven); otherwise you would need a program for this purpose.

Construct rules based on queue names, message type, feedback code, etc. It can be
appropriate in some cases to retry or discard certain messages.

Where no such action is appropriate, transfer the undelivered message to an application-
related queue for action there. A reasonable default action on a message broker would in fact
be to transfer the undelivered message to the Dead Letter Queue on the appropriate
application queue manager.

13.3. Making channels run faster

Where applicable, define channels with MCATYPE(THREAD).

On Windows NT and OS/2, message channel agents can run as a Thread or a Process.
Version 5.1 has extended this capability to UNIX as well. The channels must be started
through the MQSeries Channel Initiator or Listener for the specified choice to take effect.
Using threads would result in lower system overhead.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 77

Consider defining multi-threaded agents.

CSD #3 for MQSeries Version 5 enhances the support for multi-threaded agents by allowing
the number of agent processes (AMQLAA0) attached by the queue manager to be set by
statements in the TuningParameters stanza of the QM.INI file.

The advantage of multithreaded agents is that they significantly reduce the number of agent
processes. Instead of creating another agent process for every application, an additional
thread is added to an existing agent process.

Details can be found in MQSeries SupportPac MP02.

As a last resort, consider trusted Listeners and Channels.

This option needs to be treated with some care, and after other methods have been
exhausted. If it is used it applies to all channels in a queue manager; and would be used
instead of the multi-threaded agents described above. It can also lead to severe problems if
the conditions set out below are not met.

Standard MCA

Queue Manager Agent

Trusted MCA

Queue Manager Agent

IPC

Figure 31 – Trusted Bindings

Trusted bindings were introduced as an option in MQSeries Version 5, and were also made
available through a CSD on some version 2 products.

Channels designated as trusted run in the same process as their queue manager agent, and so
avoid the IPC overhead that was really intended as a protection from potentially errant
applications.

This reduces the number of processes required, and removes unnecessary overhead of inter-
process communication. There is no loss of integrity as a result because these components, of
MQSeries, can be trusted not to fail and compromise the queue manager and its applications
as a result.

Some results suggest somewhere between a 2 and 3 times improvement over non-persistent
with NPMSPEED(NORMAL); and not much difference against NPMSPEED(FAST). The
advantage of being trusted is in faster PUTs and GETs, particularly of persistent messages, so
this is where you might see the most benefit.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 78

This is not the default. It needs to be specified in the channel stanza of qm.ini to request it, so
it applies to all channels in a queue manager.

MQIBindType=FASTPATH

Channels with trusted binding must not be stopped with MODE(FORCE).

Ending a Trusted Channel in a non-controlled manner is likely to result in the queue
manager being left in an unstable state and needing to be recycled. In this context, stop
mode(force) is regarded as an unexpected end and should not be used.

If any trusted application (channels included) is ended without closing its open objects and
disconnecting from the queue manager in the prescribed manner, MQSeries will not be able
to free the associated resources.

CSD 4 changes the way a receiving MCA works from a blocking to a non-blocking socket call
(this is TCP/IP specific, of course), so it should always be possible to close a channel
successfully without using mode (force).

13.4. Monitoring queue managers on MVS
MQSeries for MVS/ESA provides ways to monitor a queue manager in production, and has
parameters for tuning its overall performance as a result.

13.4.1. Page set usage

Measure use of space within a page set.

Use of space in a page set can be tested with the following command:

DISPLAY USAGE

If queues need to be moved to a different page set based on this information (or to match the
use of buffer pools better), follow the instructions in “Managing page sets”, in the System
Management Guide.

13.4.2. SMF 115

Monitor actual use by collecting SMF 115 records

SMF type 115 records collected during operation provide a base for determining if buffer
pools are an appropriate size, in addition to the checkpoint frequency mentioned earlier.
Where Service Level Report (SLR) is in use at installation, extend its usage to cover MQSeries.

SupportPac MP15 can help format the results here.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 79

Tune the buffer pool sizes based on results.

Check the SMF type 115 records for the following points particularly.

In all buffer pools, the size needs to be large enough to avoid synchronous page access.
QPSTSOS particularly needs to remain zero, and also QPSTDMC.

Where messages are expected to be taken from queues soon after being put there, the size of
the buffer pool needs to be large enough to minimize disk access. Aim for the following:

• Low ratio of QPSTRIO to QPSTGETP

• Low ratio of QPSTSTL to (QPSTGETP+QPSTGETN)

Where messages are processed some time after being put, increasing the size of the buffer
pool will have little effect. Since there would be more initialization time, there could be a
negative result. It need to be large enough to prevent serious disk contention, but otherwise
kept small so that there is a steady offload.

13.4.3. Checkpoints

Have an appropriate checkpoint frequency.

The LOGLOAD default (10,000) provided in CSQ6SYSP is normally much too low for heavy
use.

Buffer pool pages older than two checkpoints are written to disk. Fifteen minutes or more
would be typical for a high use system; consistently more than ten per hour is too many.
Taking checkpoints too infrequently can result in longer restart time after a failure though.

QJSTLLCP in the log manager statistics of SMF 115 records indicates the number of
checkpoints that have been taken.

13.4.4. CICS adapter

If CICS adapter problem, check TCBs

The MQSeries CICS adapter has 8 TCBs for handling MQ requests, and this number is
usually sufficient. It can be a bottleneck though on high volume systems where there are
long MQGETs – needing and extended search or disk access.

The CKQC transaction can display the status. If the number of busy TCBs is always at the
maximum, there is a SupportPac, which can provide further information

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 80

13.4.5. Other factors

Is Message Retry causing excessive delay?

Many queue managers support a message retry function in receiving MCA channels. The
intent is to wait and retry if there is a transient delivery problem, rather than to fail messages
immediately. Other messages on the channel are held up while this waiting takes place.

The default considers Queue Full and Put Inhibited as transient; the action is to wait 10
seconds, and to repeat up to 1000 times if the error remains. (The default action can be
changed by a channel retry exit, and the exit is invoked for any type of delivery error.)

If these errors really are transient there is value in pacing a channel this way to prevent
messages arriving on the DLQ unnecessarily. Frequent or lasting errors would clearly have
an adverse effect on the channel’s performance – but fix the real errors rather than remove
message retry.

Would compression exit help?

When large messages are sent over a slow network there can be value in adding compression
in Send and Receive channel exits. This needs to be a trade off against the overhead of
invoking the exit.

No compression exit is supplied with the product, but there is a sample available on AIX,
OS/2, Windows and Windows NT; it can be found in the MQSeries

SupportPac MO02: MQSeries message compression support.

13.5. MQSeries for Sun Solaris Startup Procedures
This section describes how an MQSeries queue manager should be started in a Sun Solaris
environment provided that the underlying communications protocol is running and that the
communication links are active. Some of the events that must be started are:

• Start the Sun Solaris queue manager (strmqm qmgrname)

• Start the Sun Solaris channel initiator (runmqchi –m qmgrname –q initq)

• Start the Sun Solaris command sever (strmqcsv qmgrname)

Start-up automation on Sun Solaris platform

The commands above should be added to the Sun Solaris “startup” file for the queue
manager, channel initiator, and the command server to automatically start when Sun Solaris
is booted.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 81

MQSeries for Sun Solaris Shutdown Procedures

This section describes the order in which the MQSeries Queue Manager and its components
must stop in order to assure graceful shutdown and faster restart.

Before the shutdown of a queue manager is issued ensure that no runmqsc process is
running. This will prevent the queue manager from shutting down.

To shutdown a queue manager a controlled shutdown (endmqm –c) should be issued.
MQSeries will signal all “well behaved” user applications that the queue manager is
terminating. This procedure will ensure that all outstanding units of work are completed in
the manner intended by the application prior to ending the queue manager, with no units of
work in-doubt. Any active channels and the channel initiator should terminate normally.

NOTE: A “well behaved” application is one that uses the “FAIL_IF_QUIESCING” option on
MQOPEN, MQPUT1, MQGET, and MQPUT calls. When a controlled shutdown (endmqm –
c) is issued these applications will get a return code of QMGR_QUIESCING. This way the
application has the opportunity to commit the work done to that point or rollback the current
unit of work to a consistent state.

If the shutdown is very slow or if the queue manager does not appear to be stopping then an
immediate shutdown (endmqm –i) can be issued. If the immediate shutdown still doesn’t
stop the queue manager then a pre-emptive shutdown (endmqm –p) should be used.

If the queue manager has not shutdown after this sequence is complete then use the
procedures described in the “Stopping a Queue Manager Manually” in the MQSeries
System Administration manual.

NOTE: KILLING THE PROCESSES IN THE WRONG ORDER CAN CORRUPT THE
QUEUE MANAGER, REQUIRING RE-INSTALLATION OR RECOVERY FROM A
BACKUP WITH LOSS OF DATA.

If the queue manager shutdown command used was different from a controlled shutdown
(endmqm –c), it is recommended to record a media image of the objects by issuing the
MQSeries command “rcdmqimg”. This writes in to the linear log enough information to
completely recreate an existing object.

MQSeries for Sun Solaris Backup Procedures

For integrity of the data one should use “Linear Logging” to be able to use media recovery to
restore damaged objects. Linear logs create new files as each one is filled and processed.
MQSeries log’s disk usage will grow indefinitely. Therefore, a procedure must be in place to
archive and delete the old log files. Periodically, the queue manager writes a pair of
messages in the …/mqm/qmgrs/qmname/errors file to indicate which of the log files is still
required for media recovery and to restart the queue manager.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 82

Message AMQ7467 gives the name of the oldest log file needed to restart the queue manager.
This log file and all newer log files must be available during queue manager restart.

Message AMQ7468 gives the name of the oldest log file needed to do media recovery.

Any log files older than the ones specified in the messages can be archived to tape and
deleted from the …/mqm/log/active directory.

It is strongly recommended to put the logs (…/mqm/logs) onto a different physical drive
from the one used for the queues (…/mqm/qmgrs). Log files should be kept on different
devices from the queue manager files for performance and system integrity. They should be
placed in multiple disk drives in mirrored arrangements.

A backup procedure should be scheduled for at least once a week. Backup the queue
manager file directories (…mqm/qmgrs) and log file directories (…mqm/logs), including all
respective subdirectories. In addition backup the log control file, the MQSeries configuration
file, and the queue manager configuration file. On Sun Solaris, use the “tar” command to
backup the data and make sure that the ownership of the files is preserved. The queue
manager MUST be down during the backup process.

NOTE: The queue manager file directories and the log file directories should be backed up at
the same time to ensure they have the same ages and that they are in the same state. In
addition, it is strongly recommended to backup the directories that may be found empty.
They will be required when restoring the backups in the future.

MQSeries for Sun Solaris Recovery Procedures

This section describes what procedures to use depending on the type of failure that occurs in
the system.

• Communication failure

• A damaged MQSeries object

• A damaged log

Communications failure: If a communications failure occurs messages being transmitted to a
remote queue will remain on the transmission queue until they can be successfully
transmitted. To recover from a communications failure it might be sufficient to just stop and
restart the channel that used the link that failed.

To ensure that a channel ends normally after a communication failure it is recommended to
configure the channel with the following attributes:

Disconnect Interval (DISCINT) – It is a channel attribute. If no messages arrive on the
transmission queue during the specified time interval, the channel closes down. Next time a
message arrives on the transmission queue the channel initiator will automatically start the

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 83

channel. A very low value (a few seconds) may cause excessive overhead in constantly
starting up the channel.

Heartbeat Interval (HBINT) –- It is a channel attribute. When there are no messages on the
transmission queue, the sending MCA will send a heartbeat flow to the receiving MCA, thus
giving the receiving MCA an opportunity to quiesce the channel without waiting for the
disconnect interval to expire. The heartbeat interval value should be significantly less than
the value specified in the DISCINT. HBINT is valid on the SENDER, RECEIVER, SERVER,
REQUESTER, and CLUSTER channels.

TCP/IP KeepAlive – It is defined in the MQSeries QM.INI configuration file in the
…/mqm/qmgrs/QMGRname. A stanza must be set to enable TCP/IP KeepAlive.
SO_KEEPALIVE is an option on the TCP/IP socket. If you specify this option, TCP/IP
periodically checks that the other end of the connection is still available, and if it is not, the
channel is terminated.

A damaged MQSeries Object: If the queue manager encounters a damaged MQSeries object
during startup the queue manager automatically tries to recreate it from its media images, if
linear logging is used. If any of the defined queues can not be recovered the queue manager
will NOT start. Manually delete the file containing the damaged object and restart the queue
manager. Media recovery of the damaged object is automatic.

If a single object is reported as damaged during normal operation, recreate the object from its
media image by issuing the “rcrmqobj” command.

If the queue manager object has been reported as damaged during normal operation, the
queue manager performs a preemptive shutdown. Manually delete the file containing the
damaged queue manager and restart the queue manager. Media recovery of the damaged
queue manager object is automatic.

A damaged log: It is strongly advised to use disk mirroring for the MQSeries log files in
order to minimize the risk of not being able to recover persistent messages.

Note: If the queue manager and log backups need to be restored, restore them at the same
time to ensure that their ages are the same and that they have a valid state.

MQSeries for Sun Solaris System Management

To simplify the management of an MQSeries environment, standards and naming
conventions should be defined. In addition, the MQSeries environment and its objects must
be protected against unauthorized access through some form of security management. To
ensure that the health of the MQSeries environment is adequate monitoring and
administration procedures and tools must be evaluated.

• Naming Convention

• MQI Security

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 84

• Monitoring and Administering MQSeries

Naming Convention:

An MQSeries object naming standard should be developed. See the MQSeries Object
Naming Standard document for more information.

MQI Security:

MQSeries for Sun Solaris supplies an Object Authority Manager (OAM) that exploits the
security feature of the underlying Sun Solaris operating system. In particular the OAM uses
Sun Solaris user and group Ids. The OAM manages users’ authorizations to manipulate
MQSeries objects such as queues, process, and channels.

The MQSeries API issues resource security checks during MQCONN, MQOPEN, MQPUT1,
and MQCLOSE. When a program issues an MQOPEN or an MQPUT1 call using an alias
queue name, MQSeries uses the alias queue name to check authorization. It does not use the
resolved queue name (target queue name).

Monitoring and Administering MQSeries:

Each MQSeries queue manager provides a separate MQSeries environment consisting of
MQSeries objects, trigger monitors, and MQSeries configuration files(mqs.ini and qm.ini).
MQSeries for Sun Solaris uses a number of error logs to capture error messages concerning
the operation of MQSeries itself, any running queue manager, and error data coming from
channels in use. When an error occurs and the queue manager name is known the error
message is logged under that queue manager’s directory
(…/mqm/qmgrs/qmgrname/errors). When an error occurs but the queue manager name
is not known the error is logged under the @SYSTEM subdirectory
(…/mqm/qmgrs/@SYSTEM/errors).

Different types of errors, warnings, and other significant occurrences related to a queue
manager cause events to be entered in a specific event queue, which can be used to initiate an
automated response.

• SYSTEM.ADMIN.QMGR.EVENT – Event messages put in this queue are related to the
resources within a queue manager. For instance, an event message is generated when an
application attempts to put a message to a queue that does not exist.

• SYSTEM.ADMIN.PERFM.EVENT – Event messages put in this queue are notifications
that a threshold condition has been reached by an object. For instance, a queue depth
limit has been reached.

• SYSTEM.ADMIN.CHANNEL.EVENT – Event messages put in this queue are conditions
detected by a channel during its operation. For instance, when a channel is stopped.

A centralized MQSeries monitoring tool may use the SYSTEM.ADMIN.EVENT queues to
monitor the MQSeries network. A monitoring tool will report availability and performance

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 85

of queue managers, channels, and queues. It will allow operations of channels and queues,
browse error logs, and browse dead letter queue from a single point of control.

MQSeries for Sun Solaris Performance and Tuning

There are a few MQSeries customization issues that can affect the performance of an
MQSeries application.

• The allocation of log files

• The allocation of buffers

The allocation of log files: Log files should be kept on different devices from the queue
manager files for performance and system integrity. They should be placed in multiple disk
drives in mirrored arrangements. Logs and queue manager files should be located in
different file systems and different physical devices.

Linear logs create new files as each one is filled and processed. MQSeries log’s disk usage
will grow indefinitely. Therefore a procedure must be in place to archive and delete the old
log files. Periodically, the queue manager writes a pair of messages in the
…/mqm/qmgrs/qmgrname/errors file to indicate which of the log files is still required for
media recovery and to restart the queue manager.

The allocation of log buffers: There are two parameters used to tune the log buffers
(LogFilePages and LogBufferPages). These parameters can be specified in the queue
manager configuration file (qm.ini). The greater the number of persistent messages in the
system the more critical these parameters become.

MQSeries Performance and Tuning in a Distributed Environment

Batch size: Message throughput is very dependent on batch size. A batch size is an attribute
of the sender, receiver, and cluster channels. A batch size is determined by the message
arrival rate in the transmit queue. A low batch size may cause the transmission queue to
build up and a high batch size will make little difference. Unless there are throughput or
communications link issues that require frequent commits, set a high batch size (the default is
a good value to be used) and let it dynamically adapt.

Fast Messages: The fast message option improves the performance of non-persistent
messages by removing the overhead of commit processing on the channel. Fast message is
an option feature on each channel and it causes non-persistent messages to be lost in case of a
channel failure.

MQSeries User Exits

This section describes how MQSeries allows addition of functions through the use of exits.
There are a few user exits available with MQSeries. Channel Exits are exits specified in the
channel definition.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 86

• Security Exit: This exit is called during channel setup. The purpose of this exit is to allow
additional code that can check security credentials of the partner Message Channel Agent
(MCA). This exit can be used for non-security purposes as well. The support pack
provided by IBM uses this exit to change some of the control information in the message
header.

• Message Exit: This exit is called just after a message is read from the transmission queue
and just before a message is put onto its destination queue. It receives the entire message
and message descriptor (MQMD). It allows the message and message descriptor to be
changed. It is typically used to encrypt and decrypt a message data.

• Send Exit: This exit is called just before a buffer of data is transmitted over the network. It
receives only the message data. It is typically used to compress data.

• Receive Exit: This exit is called just after a buffer of data is received from the network. It is
typically used to decompress data.

• Data Conversion Exit: This exit is called during the process of an MQGET call using option
MQGMO_CONVERT. The format field in the message descriptor (MQMD) is used to
define the name of the loadable object containing the exit. It is used to convert byte
ordering in integers and character sets and encoding in character strings used in different
machines.

Detailed information on how to use the channel exits and the data conversion exit is defined
in the IBM MQSeries Application Programming Guide.

13.6. MQSeries for MVS/ESA Startup Procedures
This section describes how an MQSeries queue manager and related components should be
started in an OS/390 environment provided that the underlying communications protocol is
running and that the communication links are active. The three major components required
to be started are:

• Start the MVS Queue Manager Subsystem (START QMGR PARM(parmname))

• Start the MVS Channel Initiator Address Space (START CHINIT(parmname))

• Start the MVS Listener (START LISTENER TRPTYPE(TCP) PORT(port#))

The command server does not need to be started. It is started automatically when the queue
manager starts.

It is important to wait until TCP/IP, the Queue Manager, and the Channel Initiator have all
started before starting the Listener. The “START CHINIT” command should be coded in the
CSQINP2 DD concatenation file of the queue manager started task procedure. This way
when the queue manager starts it will automatically start the channel initiator.

A user-supplied dataset containing the “START LISTENER” command can be part of the
CSQINPX DD concatenation files of the channel initiator started task. When the channel

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 87

initiator address space (CHINIT) starts it will execute the “START LISTENER” command
defined in the CSQINPX file.

The MQSeries Triggering facility should be used to automatically start a Sender Channel
when a message arrives in the transmission queue.

The MQSeries-CICS attachment facility can be automatically started, via PLTPI with
parameters specified in the INITPARM of the CICS start-up Proc or in the CICS system
initialization table (SIT). Specify the name of the queue manager, initiation queue, and a trace
number to identify the adapter in CICS trace entries in the parameter list.

MQSeries for MVS/ESA Stop Procedures

This section describes the order in which the MQSeries Queue Manager and its components
must stop in order to assure graceful shutdown and faster restart.

Stopping MQSeries

• Before stopping MQSeries make sure all MQSeries console messages have received their
replies.

• STOP LISTENER TRPTYPE(TCP): This will stop the TCP/IP listener process.

• STOP QMGR MODE(QUIESCE): This will terminate the MQSeries queue manager only
when ALL connection threads have ended. MQSeries will signal all “well behaved” user
applications that the queue manager is terminating. This procedure will ensure that all
outstanding units of work are completed in the manner intended by the application prior
to ending the queue manager with no units of work in-doubt. Any active channels and
the channel initiator address space should terminate normally. If MQSeries is archiving a
log the “STOP QMGR” command will not take effect until the archiving has finished.

NOTE: A “well behaved” application is one that uses the ‘FAIL_IF_QUIESCING” option
on MQOPEN, MQPUT1, MQGET, and MQPUT calls. When the STOP QMGR MODE
(QUIESCE) is issued these applications will get a return code of QMGR_QUIESCING.
The application has the opportunity to commit the work done to that point or rollback
the current unit of work to a consistent state.

• DISPLAY THREAD(*): This command displays active threads. It shows batch
jobname(s) and/or CICS region(s). If there are no active threads and the MQSeries does
not terminate then issue “STOP QMGR MODE(FORCE)”.

NOTE: DO NOT CANCEL MQSeries address space unless STOP QMGR MODE
(FORCE) does not terminate the queue manager.

MQSeries for MVS/ESA Backup Procedures

This section describes backup procedures that can minimize any future recovery problems.
The MQSeries datasets are:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 88

• Bootstrap dataset (BSDS) – BSDS datasets contain an inventory of all active and archived
log datasets.

• Pagesets – MQSeries provides one hundred pageset datasets. Pageset zero is used to
store all object definitions required by a queue manager. All other pagesets ranging from
01 through 99 are used to store messages. Storage class (a parameter of a local queue
definition) maps one or more queues to a page set.

• Active Logs – Active Logs contain information needed to recover persistent messages
and MQSeries objects.

• Archive Logs - Archive Logs are copies of Active Logs. When an Active Log fills up
MQSeries copies its contents to a DASD or tape dataset called Archive Log.

Specify dual Active Logging, dual BSDS datasets, and switch archiving on (OFFLOAD=YES)
in the MQSeries macro CSQ6LOGP of the MQSeries subsystem initialization parameters
(CSQZPARM). These may not be necessary in a development environment, but it is required
in a QA and Production environments to avoid loss of data. Each copy of the Active Logs,
each copy of the BSDS datasets, and the pageset datasets should reside in separate physical
volumes and if possible, in mirrored arrangements.

Each time a new Archive Log is created a copy of the BSDS is put into the Archive Log. If an
Archive Log dataset is deleted the information about the Archive Log must be removed from
the BSDS dataset using the CSQJU003 utility.

Consider having two backup copies of each back-up cycle. Make backups of the MQSeries
BSDS, pagesets, and the corresponding log datasets at least once a week to obtain a weekly
point of recovery and for disaster recovery purposes. Ensure that the RBA number in page 0
of each page set, called the recovery log sequence number (LSN) is backed-up. This number
is the starting RBA in the log from which MQSeries can recover the page set. Provided that
all logs are available from this point forward all messages can be recovered to the point of
failure.

MQSeries for MVS/ESA issues two messages to assist in managing the logs.

• CSQI024I -- This message gives the restart RBA (relative byte address) for the subsystem,
but does not include any offline page sets in the calculation of this restart point.

• CSQI025I -- This message gives the restart RBA (relative byte address) for the subsystem,
including any offline page sets.

All log records must be kept as far back as the lowest RBA identified in messages CSQI024I
and CSQI025I.

To obtain a full backup of the MQSeries datasets the queue manager must be shutdown
during the backup process. If the queue manager is running during the backup process
updates may be held in buffers, which means the backup datasets are NOT in a consistent
state. That is called a “fuzzy” backup. Please see the MQSeries for MVS/ESA System
Management Guide for information on the steps required to create a full back up.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 89

MQSeries for MVS/ESA Recovery Procedures

This section describes what procedures to use depending on the type of failure that occurs in
the system.

• Queue Manager ended abnormally

• Pageset dataset is full

• Pageset dataset failure

• BSDS recovery

Queue Manager ended abnormally:

An abnormal termination can leave data in an inconsistent state leaving units of recovery in
doubt. MQSeries resolves the data inconsistencies during restart.

Pageset data set is full

A pageset is a LINEAR VSAM dataset that is formatted to be used by MQSeries. Up to 123
secondary extents can be defined for a pageset provided that enough disk space is available.
The pageset utilization can be displayed with MQSeries command DISPLAY USAGE
PSID(nn). The pageset zero should be used for systems entries ONLY. An MQSeries queue
manager will not start if the pageset zero becomes full or is unavailable.

When a pageset is full an application program may receive a reason code of
MQRC_PAGE_SET_FULL from an MQI call. At this point the pageset can either be
expanded or the messages load balanced between multiple pagesets.

A queue manager must be down in order to expand a pageset. A pageset is expanded by
creating a new pageset, formatting it, and copying all the messages from the old pageset to
the new one. CSQUTIL provides FORMAT and COPYPAGE functions that can be used to
expand a pageset.

Pageset dataset failure

Provided that all needed recovery logs are available MQSeries can recover a pageset during
restart. If the logs are not available the point of recovery backups can be used to recover a
pageset. Please see “Recovering pagesets” in the IBM MQSeries for MQS/ESA System
Management Guide.

BSDS recovery procedures

The BSDS dataset MUST be a dual dataset residing on different volumes. Dual BSDS dataset
mode is specified in the CSQ6LOGP macro which is part of the systems initialization
(CSQZPARM). If one BSDS gets damaged MQSeries changes to a single BSDS mode and
MQSeries continues running without a problem. The damaged BSDS copy needs to be
recovered before restart. To recover a damaged BSDS use the VSAM AMS utilities to delete

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 90

the old BSDS and to create a new BSDS VSAM cluster. In addition the MQSeries RECOVER
command must be used to copy the active BSDS into the newly created BSDS and to reinstate
the dual mode.

 If both BSDS datasets get damaged the last Archive Log can be used to recover the BSDS
datasets. Please read the step by step procedure listed in the IBM MQSeries System
Management Guide section “BSDS Recovery”.

MQSeries for MVS/ESA System Management

Security: MQSeries for MVS/ESA uses the MVS system authorization facility (SAF) to
interface to an External Security Manager (ESM), such as RACF. The ESM manages users’
authorizations to manipulate MQSeries objects such as queue manager, queues, process, and
channels.

13.7. MQSeries Integrator System Management

13.7.1. Installation

There are a number of components to be installed before the system can be configured and
used. This list of components will vary depending on which platform is being installed. A
full list of components and hardware and software requirements will be available in the
product documentation and the announcement letter.

If required, the installation tool can also be used to uninstall the product, removing both the
product code base and any entries in the system registry database.

13.7.2. Configuration and Set-up

Once the product has been successfully installed, it needs to be configured before use. The
tasks that product configuration will need to perform are as follows:

Definition of message flows

This requires the designing of the components along with building new components by
wiring together existing components.

Definition of message sets/formats

This will define the logical definition of a message format and the assignation of it to a
message set.

Definition of brokers and broker topology (including execution groups)

This will set the association between the message flow and an execution group, and also the
association between message sets and defined brokers.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 91

Definition of publish/subscribe topology within a broker

This will cover all the connectivity issues between brokers and collectives to propagate
publish and subscribe messages across a broker domain.

Definition of Access Control to topics and policies Security for users and groups is handled
by the underlying operating system security.

Publish/Subscribe topics are defined to MQSeries Integrator and principals (groups and/or
users) are associated with them. ACLs for publish/subscribe and other information are then
associated with principals.

Deployment of the defined configuration

Once a configuration has been defined, it should then be deployed to the specified broker to
load the runtime configuration. The configuration manager process will be notified if this
deployment fails.

13.7.3. Interfaces for Definition and Deployment

All configuration changes are routed through the configuration manager. This is required to
enable the configuration manager to provide information to recover/restart any set-up that
needs to be recreated, even if the changes have only been applied during runtime.
Communication between user interfaces and the configuration manager, and between the
configuration manager and the broker components, uses MQSeries Messaging.

The messages for the various interfaces are designed to be best suited to the needs of those
using the interfaces. For example, the monitoring and reporting interfaces are defined as a
set of XML messages that are published by the MQSeries Integrator broker, along with an
associated set of system meta-topics. These can be subscribed to by applications needing to
monitor the state of the broker. As appropriate to the information it will either be retained or
be available on a request/reply model.

13.7.4. Deployment of Changes

As already stated, for all brokers in a domain, the configuration data is held by the
configuration manager, which is unique in a domain. This holds two stores of data, one of
which is the shared working version and one of which is the deployed, or runtime, version.

The deployed version is populated with data from the shared working version by deploying
the data. By working with the Control Center, the shared working data can be deployed.
Authorized local users of the machine on which it is installed can only use the Control
Center.

Individual objects cannot be selectively deployed, but entire sets of objects instead must be
deployed. These sets could be any or all of the following:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 92

• All relevant message flows, execution groups, message sets

• All topics and associated ACLs

• All Pub/Sub topology information

However, the deployment can be selected to deploy just the changes rather than redeploy the
entire configuration, thus improving the performance of the deployment. In order to deploy
the data to the brokers, the format of the XML as used by the tools must be compiled into the
XML format understood by the broker. Once this is complete the data is transmitted to the
broker using a message to the Administration Queue for that broker, where the
Administrative Agent in the broker handles it.

The agent deploys the data to the affected components. These update the active runtime
cache and activate the changes. Messages on the success of the update will be processed
through the Administrative Agent and then the Configuration manager, where the report
can be further processed.

As an example, when changing a Message Dictionary that is already available in a Resource
Manager, a new version of the dictionary is deployed, using WebDAV for versioning. Thus
an older version number can identify the version that might be held in a RTD than that held
by the Resource Manager. New dictionaries and new dictionary versions are inserted into
broker administration messages and published to all relevant brokers using broker
administration messages. The dictionary can then be passed on to the RTD in order to
replace the existing deployed version.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 93

14 EAI Performance Tuning

As more and more application functions are connected together within the EAI technical
environment, performance tuning will become critical in ensuring the overall success of the
ITA.

MQSeries
Message
Broker

Application

Application

Application Application

Application

Application

Figure 32 – MQSeries Message Broker

The need to design for performance is evident from the fact that all enterprise messages are
required to flow through the message broker in the ITA. The need for the message broker to
“perform well” can be generalized to include such topics as reliability, or to allow changes
without disruption to applications.

This section does not discuss the performance design of programs that run using the message
broker, except where it can be affected by configuration options. For this purpose the
assumed characteristics of programs in the broker are as follows:

They are designed to process a stream of messages efficiently; they do not connect to the
queue manager or open queues repeatedly for example.

• They are well behaved, in the MQSeries sense. If the operator shuts down the queue
manager, the programs can continue to a point of consistency, but would end cleanly
within a reasonable time (5 minutes is usually regarded as an acceptable limit).

• They do not perform application function; nor any long-running process on messages.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 94

14.1. Requirements
Some design requirements on the message broker performance can be gathered from
assumptions about the applications, and the messages that flow between them. For example:

• The size of the messages, and the rate they flow through the broker – and whether it is a
sustained rate, or some other arrival pattern.

• Whether there is an application requirement for the broker to transfer messages in a
defined time, or if messages could be accumulated and delivered as a batch later.

• Whether messages are persistent or not.

14.2. Dynamic Workload Distribution
Dynamic Workload Distribution (DWD) is a new capability in MQSeries for OS/390 V2.1,
and in MQSeries Version 5.1. DWD allows clusters of Queue Managers, across multiple
systems, that share definitions of public queues and channels, yet look like a single, local
system.

The message broker and connected application nodes might be regarded as a messaging
cluster, even though the application queue managers do not communicate directly. The
benefits are enormous:

• Heavy workloads can be balanced across multiple Queues and/or systems.

• The system is inherently and transparently fault-tolerant.

• Administration of complex MQSeries networks is simplified.

• Conflicts between departments sharing MQSeries resources are eliminated

Dynamic Workload Balancing also offers strong failure-tolerance in its normal mode of
operation, making it very cost effective in terms of hardware and administration. By having
more than one instance of the same queues in a cluster, each performing an equivalent
function, a failure leaves the others to continue unaffected. This can also be combined with
fail-over capability from other high-availability technologies.

14.3. Capacity planning information
The most important and current source of information for capacity planning is the MQSeries
SupportPac library. It contains detailed performance reports from the product group; the
reports usually arrive shortly after the product is generally available, and contain planning
information not found in the documentation.

http://www.software.ibm.com/ts/mqseries/txppacs/txpm3.html#perfor

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 95

14.4. Designing Queue Managers for Performance
The first place to look for performance benefits is the queue manager located on the message
broker. Some parameters can be changed to improve performance, but some are fixed when
the queue manager is created. As a result, review this section before creating a production
queue manager.

14.4.1. Logging

Logging of persistent messages is commonly the key activity which would limit local
queuing performance, and particularly if the messages are large.

Most MQSeries implementations, and certainly those likely to be found in a message broker,
include logging for recovery. The following queue managers are the exceptions that do not
perform logging.

If logging is a constraint, extra queue managers can help.

If a queue manager is expected to have many large persistent messages, its constraint may be
writing to the log disks. If there is processing speed in hand, extra capacity may be achieved
through multiple queue managers on the system. This does require each queue manager to
have its own dedicated log drive to achieve this end; and any message channel
communication needed between these queue managers would have to be included in the
estimate.

Address the logging configuration ahead of time.

Logging is often found to be a limiting factor in overall MQ performance. If its configuration
is not correct when it comes to tuning an existing system, the best approach is to define a new
queue manager following these recommendations.

Decide the type of logging to support the level of recovery required.

Circular logging is simpler to manage. It provides recovery from system and network
failures, but not from disk failures where the queues reside.

Additional integrity may be achieved using mirrored disks to replicate queue or log storage.
On MVS/ESA, MQSeries can be configured to write duplicate logs.

• Ensure log drives are separate from queues. On any system, configure MQSeries so that
logging is performed on a drive that is separate from queues. This is necessary anyway if
the logs need to recover from disk failures. In addition, MQSeries will be faster by
avoiding the contention.

• On MVS/ESA keep log data sets separate from each other. Dual logs need to be on
separate drives, from each other as well as from the page sets containing the queue data.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 96

• Each log should have at least two log data sets, and ideally more in a production system.
These need to be on separate drives too, in order to avoid disk contention during log
archive.

• On MVS/ESA do not switch archiving off in a production system.

• Where there is a choice, put logs on the fastest drive available. On most systems this
means aiming for a dedicated disk, or at least one that is lightly used. On MVS/ESA, the
log disks can be configured with caching and fast write.

Note that MQSeries on distributed platforms needs to force log writes to disk immediately,
and verifies that the file system will support this feature. Some operations occasionally
require an immediate write to queue files. As a result, MQSeries generally will not allow a
network drive to be used for logs or queues.

14.5. UNIX kernel parameters
Below are some current recommendations for the UNIX kernal parameters for MQSeries
Version 5.

• If the existing value is already higher than what is shown (for other software on the
system), leave it unchanged. Use the system default or existing value for other
parameters.

• These recommended values might need to be higher if there are multiple queue
managers on a system, or if there are many MQSeries channels.

• Increase semmni by 50 for MQSeries V5. There has been a significant reduction from
MQSeries V2, where the original documented value should be used. Review the actual
usage by applications since this can be expensive.

• Similarly increase semmns by 200 for MQSeries V5.

• Otherwise, the recommendation would be to set the following:

semmnu = 2048
semume = 256
shmmax = 0X30000000
shmmni = 512
shmseg = 1024

14.6. MVS Queue Managers
This section contains some further points to verify an MQSeries queue manager is set up
right. Unlike logging, these are specific to a platform; but they are factors that can be tuned in
a production queue manager, and in response to observed performance data.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 97

14.6.1. Page sets and storage class

Never map queues to page set zero.

In MVS/ESA MQSeries stores messages and queue definitions in linear VSAM data sets
known as page sets. In operation, MQSeries operates on this data in memory buffer pages,
and manages the disk access to page sets when needed.

The page sets are numbered 00 – 99, and MQSeries stores object definitions and attributes
page set zero. There will be a performance impact due to the contention if queue data is
assigned there as well. In addition, there is a danger of serious problems if page set zero ever
becomes full.

Verify that no storage class identifies page set zero.

Local Queues are defined with reference to a storage class; each storage class is assigned to a
page set. Hence there is a level of indirection. One possibility is to define application specific
storage classes to enable page set reselection. Use the following command to check that no
storage class maps to page set zero.

DISPLAY STGCLASS(*) PSID(00)

The aim would be to have to no storage class listed as meeting this selection. Even if a
storage class is listed there may be no corresponding queue in page set zero; in which case
change the assigned page set, or delete the storage class if not needed.

If queues do need to be moved from page set zero, follow the instructions in “Managing page
sets”, in the System Management Guide.

14.6.2. Buffer pools

Plan buffer pool selection to enable tuning.

The buffer pages are arranged in up to four pools; the size of each is configured with the
DEFINE BUFFPOOL command in the CSQINP1 initialization input data set, and takes effect
when the queue manager is started.

The size of each buffer pool can be used for tuning performance. For the moment, here is a
suggested differentiation of the four pools in order to offer most scope.

Reserve for use with page set zero. The documentation recommends not putting messages in
the same buffer pool as the object attributes.

Short life messages, which are expected to be transferred out of the message broker
immediately after arrival. A large buffer pool here would tend to keep messages resident in
memory, and avoid access to disk.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 98

Long life messages. Where messages are stored for later delivery there is little to be gained
trying to keep messages in memory. A smaller buffer pool to ensure a steady offload would
be quicker to recover if needed.

Default, or messages where performance is less critical – and keep them separate from the
previous ones with known requirements.

Page sets are assigned to buffer pools when processing the CSQINP1 data set. Plan to enable
the most appropriate buffer pool selection in restarting the queue manager.

Assign each queue to its optimum buffer pool.

The section above described the need to configure a queue manager so that Buffer Pools can
be optimized for different queuing characteristics. The corresponding recommendation for
applications or a message broker is to understand the characteristics of messages in its
queues, and to assign them to appropriate storage. Some users employ an application
specific storage class to enable separate tuning later if needed.

14.6.3. Indexed queues

Define a queue as indexed where appropriate.

If any queue is primarily retrieved by MsgId or CorrelId, MQGET times can be significantly
improved by defining the queue with the corresponding Index. Note that it can take time to
build (at restart) an index for deep queue, one containing many messages, since the entire
queue has to be read.

14.7. Channels
This chapter discusses the design of the MQSeries channels, which connect the message
broker to nodes. The performance of the channels is frequently the main factor in overall
performance of the message broker. In addition to these design choices, some external
factors will govern MQSeries channel capacity, including for example: speed and utilization
of the network; speed of MQSeries log devices at both ends; CPU speed at both ends. There
may be further operational factors such as whether messages from the transmission queue
will need to be read from disk.

14.7.1. Classes of service

In general, messages with different characteristics would need to transfer through the
message broker, and it is sometimes useful to separate them into “classes of service”. For
example, sending very large messages for later processing could impact the response time of
shorter messages. There may be other reasons too, such as security.

The way to do this with MQSeries is to have multiple channels to separate the classes of
service.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 99

14.7.2. Number of channels

Memory requirement often limits the total number of channels. Apart from the capacity
needed to support the message transfer rate, the usual limiting factor for the number of active
channels is the amount of memory each needs. The SupportPac library can give more detail,
but the following is a rough guide for MVS channels.

Each MVS channel requires some reserved storage “below the line”. This was around 8K
bytes in early releases; about 1200 bytes in version 1.2; still less in the current version 2.1.

The virtual memory needed for each MVS channel is about 150KB plus the maximum
message size. The availability of paging space is usually more limiting in current releases
than below line storage.

Configure one pair of channels between two queue managers.

Apart from the need to separate classes of messages to different channels in this way, one
reasonable question is whether multiple channels between two queue managers would
perform better than one.

The result however is that defining extra channels increases the storage requirement, and
makes less effective use of the batch capability.

14.8. Network tuning
MQSeries can operate over different types of network, the choice being transparent to the
applications. Some MQSeries configurations include multiple types of network. There are
some performance differences between the network types, but in many cases the transport
type will have already been chosen for reasons other than MQSeries.

The network that is used to carry the messages may also be regarded as a channel
component, and as such has some further potential for tuning.

14.8.1. SNA

RUSIZE is typically not enough.

MQSeries is often configured over existing networks, where the RUSIZE typically has a value
of 256, which is sufficient for terminal connection. This is not enough to run MQSeries
effectively, so use an MQ specific LOGMODE with a higher value. The SupportPac
performance reports use an RUSIZE of 1920 throughout, and it should be higher still for
larger messages.

The parameter may appear under a different name on other platforms, but this
recommendation applies just the same.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 100

The pacing parameter is often too low.

A value of 20 is suggested. Better still, specify adaptive pacing where possible, and let SNA
determine the best parameters. Ensure pacing is compatible at both ends.

Specify DELAY = 0 in the VTAM PU definition.

It has been reported that setting this value can significantly increase throughput and reduce
response time.

14.8.2. TCP/IP

Increase the MTU Size.

The SupportPac report recommends increasing the MTU size, specified on the GATEWAY
statement, to 65572.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 101

15 Further Information

• MQSeries home page, http://www.software.ibm.com/ts/mqseries/

• MQSeries Planning Guide, GC33-1349

• MQSeries Queue Manager Clusters, SC34-5349

• MQSeries Intercommunication, SC33-1872

• MQSeries for MVS/ESA V1.2 System Management Guide, SC33-0806

• MQSeries for OS/390 V2.1 System Management Guide, SC34-5374

• MQSeries System Administration, SC33-1873

• MQSeries SupportPacs

These are supplementary materials freely available from the web to enhance MQSeries,
including reports and samples. The text identifies a link to the catalog of all that relate
specifically to performance. The following, including some listed other than in the
performance category, are particularly relevant to the scope of this document.

• MD01: MQSeries – Standards and conventions

• MO02: MQSeries message compression support

• MP02: MQSeries Version 5 – Multithreaded Agents

• MP15: MQSeries for MVS/ESA – Printing statistics and accounting records

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 102

16 Acronyms

Table 1 – List of Acronyms

Acronym Description

AMI Application Message Interface

API Application Programming Interface

CICS Customer Information Control System

CMI Common Message Interface

CORBA Common Object Request Broker Architecture

COTS Commercial-Off-the-Shelf

DOE Department of Education

DWD Dynamic Workload Distribution

EAI Enterprise Application Integration

EJB Enterprise Java Bean

GB Gigabyte

IBM International Business Machines

IRUD Insert, Retrieve, Update, and Delete

ITA Integrated Technical Architecture

JMS Java Message Service

LAN Local Area Network

MB Megabyte

Mhz Megahertz

MQAA MQSeries Application Adapter

MQI Message Queue Interface

MQSI MQSeries Integrator

MQWF MQSeries Workflow

ORB Object Request Broker

RAM Random-access Memory

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT

VOLUME 3
ENTEPRISE APPLICATION INTEGRATION

OCTOBER 13, 2000 16 – 16.1.2 103

Acronym Description

SFA Student Financial Assistance

SNA Systems Network Architecture

SQL Structured Query Language

TCP Transmission Control Protocol

VDC Virtual Data Center

WAN Wide Area Network

XML Extensible Markup Language

	Master Table of Contents

